粮油食品科技

1. 中国科学引文数据库(CSCD)收录期刊
2. 2023年版《中文核心期刊要目总览》收录期刊
3. 中国科技核心期刊
4. CACJ中国应用型核心期刊
5. 科创中国“科技期刊双语传播工程”入选期刊
6. “中国精品期刊展”入选期刊
7. 荷兰Elsevier-Scopus数据库收录期刊
8. 瑞典DOAJ(开放存取期刊目录)收录期刊
9. 美国EBSCO学术数据库收录期刊
10. 美国《化学文摘》(CA)收录期刊
11. 英国《食品科技文摘》(FSTA)收录期刊
12. 英国国际应用生物科学中心(CABI)数据库收录期刊
13. 日本科学技术振兴机构中国文献数据库(JSTChina)收录期刊
14. 美国《乌利希国际期刊指南》(UPD)收录期刊
15. OA开放获取典范期刊

基于DBN-MFSVM的玉米跨境供应链风险预警方法
DOI:
作者:
作者单位:

作者简介:

通讯作者:

基金项目:


Risk Warning Method of Corn Cross-border Supply Chain Based on DBN-MFSVM
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
    摘要:

    针对当前玉米跨境供应链系统中存在大量的非结构化数据,具备多源异构特点。传统的风险预警方法存在过度依赖人工决策、预警准确率偏低等缺陷。为解决上述问题,提出基于深度置信网络和多类模糊支持向量机的玉米跨境供应链系统风险预警方法。首先基于嵌入编码与归一化原理,预处理玉米跨境供应链系统中的大量非结构化数据,转化为结构化数据,便于后续计算;然后基于深度置信网络,提取数据高纬度特征,自适应挖掘出玉米跨境供应链系统中风险指标变化趋势与关联性;最后将提取出的高维度特征输入到多类模糊支持向量机模型中进行训练,实现玉米跨境供应链风险分级预警。所提算法能够在运行时间相近的情况下,准确率达到94.88%,较最差算法提升52.17%,综合性能较其他算法优越,能够为玉米跨境供应链系统风险监管应用提供理论支撑。

    Abstract:

    There is a large amount of unstructured data in the current corn cross-border supply chain system and it has the characteristics of multi-source heterogeneous. Traditional risk early warning methods have defects such as over-reliance on manual decision-making and low accuracy of early warning. In order to solve the above problems, this paper proposed a system risk early warning method of corn cross-border supply chain based on deep belief network and multi-class fuzzy support vector machine. Firstly, based on the principle of embedding coding and normalization, a large number of unstructured data in the corn cross-border supply chain system were preprocessed and converted into structured data for subsequent calculation. Then, based on the deep belief network, the high-latitude features of the data were extracted, and the change trend and correlation of risk indicators in the corn cross-border supply chain system were adaptively mined. Finally, the extracted high-dimensional features were input into the multi-class fuzzy support vector machine model for training to realize the risk classification early warning of corn cross-border supply chain. The accuracy of the algorithm proposed in this paper can reach 94.88% under the condition of similar running time. It is 52.17% higher than that of the worst algorithm, and the comprehensive performance was superior to other algorithms which can provide theoretical support for the application of system risk regulation of corn cross-border supply chain.

    参考文献
    相似文献
    引证文献

当期目录


年第卷第

文章目录

过刊浏览

引用本文

葛振林.基于DBN-MFSVM的玉米跨境供应链风险预警方法[J].粮油食品科技,2024,32(5):202-210.

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2024-09-25
  • 出版日期: