粮油食品科技

1. 中国科学引文数据库(CSCD)收录期刊
2. 2023年版《中文核心期刊要目总览》收录期刊
3. 中国科技核心期刊
4. CACJ中国应用型核心期刊
5. 科创中国“科技期刊双语传播工程”入选期刊
6. “中国精品期刊展”入选期刊
7. 荷兰Elsevier-Scopus数据库收录期刊
8. 瑞典DOAJ(开放存取期刊目录)收录期刊
9. 美国EBSCO学术数据库收录期刊
10. 美国《化学文摘》(CA)收录期刊
11. 英国《食品科技文摘》(FSTA)收录期刊
12. 英国国际应用生物科学中心(CABI)数据库收录期刊
13. 日本科学技术振兴机构中国文献数据库(JSTChina)收录期刊
14. 美国《乌利希国际期刊指南》(UPD)收录期刊

机器学习算法在预测茉莉花茶风味品质中的应用
DOI:
作者:
作者单位:

作者简介:

通讯作者:

基金项目:


Application of Machine Learning Algorithms in Predicting Flavor and Quality of Jasmine Tea
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
    摘要:

    机器学习作为人工智能的一个子领域,因其能够在大量数据中学习模型总结经验的出色能力得到广泛应用。针对茉莉花茶风味品质预测中存在耗时耗力、客观性差、准确率低等问题,引入机器学习算法。机器学习算法作为人工智能和计算机科学的一个分支,利用数据和算法来模拟或实现人类的学习行为,在处理无关信息、提取特征变量、建立校准模型等方面具有强大能力,在食品行业有着广泛的应用。近年来,针对机器学习在茶叶加工中的应用研究报道较多,但有关该技术应用于茉莉花茶风味品质中的报道较少。本文综述了随机森林、支持向量机、卷积神经网络等常用机器学习原理模型及其对茉莉花茶风味品质预测,介绍了当前机器学习模型在其风味品质预测中物理测试、化学指标、微生物和病虫害检测研究等方面的应用,为机器学习在茉莉花茶产业发展中的应用提供参考。

    Abstract:

    As a subfield of artificial intelligence, machine learning has gained widespread application due to its exceptional ability to learn models and summarize experiences from large datasets. To address the issues of time consumption, labor intensity, poor objectivity, and low accuracy in the flavor quality prediction of jasmine tea, machine learning algorithms were introduced. As a branch of artificial intelligence and computer science, machine learning utilizes data and algorithms to simulate or replicate human learning behavior, exhibiting strong capabilities in handling irrelevant information, extracting feature variables, and building calibration models. It has found broad applications in the food industry. In recent years, there have been numerous reports on the application of machine learning in tea processing, but there are relatively few review articles specifically focused on the application of machine learning techniques in predicting the flavor quality of jasmine tea. This paper reviewed the principles of commonly used machine learning models and their application in predicting the flavor quality of jasmine tea. It introduced the application of current machine learning models in the physical testing, chemical indicators, and microbial and pest detection aspects of jasmine tea flavor quality prediction, with the aim of providing a reference for the application of machine learning in the development of the jasmine tea industry.

    参考文献
    相似文献
    引证文献

当期目录


年第卷第

文章目录

过刊浏览

引用本文

黄叶群,周晗林,童秀平,吉伟明,孙意岚,饶建青,温成荣,庞 杰*.机器学习算法在预测茉莉花茶风味品质中的应用[J].粮油食品科技,2024,32(5):142-150.

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2024-09-25
  • 出版日期: