粮油食品科技

中国科技核心期刊
美国EBSCO学术数据库收录期刊
美国《化学文摘》(CA) 收录期刊

基于图像处理和神经网络的小麦不完善粒识别方法研究
DOI:
作者:
作者单位:

作者简介:

通讯作者:

基金项目:


Identification of unsound kernels in wheat based on image processing and neural network
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
    摘要:

    为了实现图像处理技术对小麦不完善粒的准确快速识别,研究了一种基于小麦不完善粒图像特征和BP神经网络的不完善粒识别方法。采集小麦不完善粒图像,对图像进行中值滤波、形态学运算、图像分割等处理后,针对每个小麦籽粒,提取其形态、颜色和纹理共3大类54个特征参数,采用主成分分析法提取8个主成分得分向量作为模式识别的输入,建立BP神经网络模型,实现对小麦不完善粒的检测识别。结果表明,该模型对完善粒、破损粒、病斑粒、生芽粒和虫蚀粒的判别正确率分别为93%、98%、100%、90%和85%,平均判别正确率达到93%,可有效对小麦不完善粒进行检测识别。

    Abstract:

    In order to identify accurately and fast the unsound kernels of wheat by image processing technology, a novel detection method was studied based on image features of unsound kernels and BP neural network. The images of unsound kernels were captured and some image processings (median filtering, morphological operations and image segmentation etc.) were performed to extract 54 parameters from three characteristic categories (shape, color and texture). 8 principal components vectors were extracted as the inputs of pattern recognition by principal component analysis. The neural network model was established for identifying unsound kernels of wheat. The results showed that the recognition rate of sound kernels, broken kernels, spotted kernels, sprouted kernels and insect damaged kernels was 93%,98%,100%,90% and 85%, respectively, and the average recognition rate was 93%. It is concluded that this method is an effective way to identity unsound kernels of wheat.

    参考文献
    相似文献
    引证文献

当期目录


年第卷第

文章目录

过刊浏览

引用本文

张玉荣,陈赛赛,周显青,王伟宇,吴琼,王海荣.基于图像处理和神经网络的小麦不完善粒识别方法研究[J].粮油食品科技,2014,22(3):59-63.

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2014-06-19
  • 出版日期: