SCIENCE AND TECHNOLOGY OF CEREALS, OILS AND FOODS

Chinese Science Citation Database (CSCD)
A Guide to the Core Journals of China (2023)
The Key Magazine of China Science and Technology
"2022、2023 Bilingual Communication Project for Chinese STM Journals"
"2022 China Fine Periodical Exhibition"
Elsevier-Scopus Database
Directory of Open Access Journals (DOAJ)
EBSCO Research Database
Chemical Abstracts (CA)
Food Science and Technology Abstract (FSTA)
CAB International Database (CABI)
Japan Science and Technology Agency (Chinese Bibliographic Database) (JSTChina)
Ulrich’s Periodicals Directory (UPD)

Food Image Classification Based on CBAM-Inception V3 Transfer Learning
  • Share:

Food Image Classification Based on CBAM-Inception V3 Transfer Learning

DU Hui-jiang, CUI Xiao-yi, WANG Yi-meng, SUN Li-ping

School of Medical Instruments, Shanghai University of Medicine and Health Sciences, Shanghai 201318, China)

Abstract: To improve the accuracy of automatic recognition and classification of food images, a classification model CBAM- InceptionV3 is proposed, which embeds the Convolutional Block Attention Module. The specific method is to split the Inception V3 model with ImageNet pre-trained weight parameters into blocks, embed CBAM modules after each Inception block, and reassemble them into a new model, embedding a total of 11 CBAM modules. This new model is used for transfer learning of Food-101 food image dataset padded and scaled to 299 pixels in both length and width, with the highest accuracy of 82.01%. Compared with the original Inception V3 model, the CBAM module can effectively improve the model's feature extraction and classification capabilities. At the same time, transfer learning can significantly improve the accuracy rate and shorten the training time compared with the training from scratch. Compared with several other mainstream convolutional neural network models, the results show that this new model has higher recognition accuracy and can provide strong support for food image classification and recognition.

Key words: food image classification; channel attention; spatial attention; CBAM; InceptionV3; transfer learning

Chinese Library Classification Number: TP183

Documentary Identification Code: A      Article ID: 1007-7561(2024)01-0091-08

Published time on CNKI: 2023-12-27 17:47:09

Published address on CNKI: https://link.cnki.net/urlid/11.3863.ts.20231226.1725.010

Published date:2024-01-24Click:

Current Issue


Volume , No.

Table of Contents

Archive

Volume

Issue

Most Read

Most Cited

Most Downloaded