SCIENCE AND TECHNOLOGY OF CEREALS, OILS AND FOODS

1. Chinese Science Citation Database (CSCD)
2. A Guide to the Core Journals of China (2023)
3. The Key Magazine of China Science and Technology
4. Chinese Applied Core Journals (CACJ)
5. China Core Agricultural and Forestry Journals
6. Bilingual Communication Project for Chinese STM Journals
7. China Fine Periodical Exhibition
8. Elsevier-Scopus Database
9. Directory of Open Access Journals (DOAJ)
10. EBSCO Research Database
11. Chemical Abstracts (CA)
12. Food Science and Technology Abstract (FSTA)
13. CAB International (CABI) Database
14. Japan Science and Technology Agency Chinese Bibliographic Database (JSTChina)
15. Ulrich's Periodicals Directory (UPD)
16. OA Open Access Model Journal

Study on the Distribution Characteristics of Tribolium Castaneum in Wheat Grain Heap
CSTR:
Author:
Affiliation:

Clc Number:

Fund Project:

  • Article
  • |
  • Figures
  • |
  • Metrics
  • |
  • Reference
  • |
  • Related
  • |
  • Cited by
  • |
  • Materials
  • |
  • Comments
    Abstract:

    Using a new type of insect probe trap, the activity and distribution of Tribolium castaneum in wheat grain bulks inside experimental silos were collected and analyzed to investigate its distribution patterns and main influencing factors within the grain bulks. An equation for estimating insect population density was established to provide a scientific basis for accurate monitoring and early warning. The results showed that the daily capture of Tribolium castaneum did not change significantly over time. When the insect population density was low, Tribolium castaneum was mainly distributed in the top and middle layers of the grain bulk. When the insect population density was high, Tribolium castaneum was uniformly distributed within the grain bulk. Tribolium castaneum exhibited thermophilic and hygrophilic behaviors, with an optimal activity temperature range of 22~30 ℃ and a relative humidity range of 40%~53%. By comprehensively analyzing the spatial and temporal distribution patterns of the insect population and the effects of temperature and humidity, the actual insect population density could be estimated based on the number of insects captured by the probe traps. The equation for estimating the insect population density was: y = 10.566 – 0.321 × x1 – 0.017 × x2 + 0.026 × x3, x1: temperature (℃), x2: relative humidity (%), x3: number of insects captured.

    Reference
    Related
    Cited by
Get Citation
Related Videos

Share
Article Metrics
  • Abstract:
  • PDF:
  • HTML:
  • Cited by:
History
  • Received:
  • Revised:
  • Adopted:
  • Online: November 27,2024
  • Published:
Article QR Code