SCIENCE AND TECHNOLOGY OF CEREALS, OILS AND FOODS

1. Chinese Science Citation Database (CSCD)
2. A Guide to the Core Journals of China (2023)
3. The Key Magazine of China Science and Technology
4. Chinese Applied Core Journals (CACJ)
5. China Core Agricultural and Forestry Journals
6. Bilingual Communication Project for Chinese STM Journals
7. China Fine Periodical Exhibition
8. Elsevier-Scopus Database
9. Directory of Open Access Journals (DOAJ)
10. EBSCO Research Database
11. Chemical Abstracts (CA)
12. Food Science and Technology Abstract (FSTA)
13. CAB International (CABI) Database
14. Japan Science and Technology Agency Chinese Bibliographic Database (JSTChina)
15. Ulrich's Periodicals Directory (UPD)
16. OA Open Access Model Journal

Risk Warning Method of Corn Cross-border Supply Chain Based on DBN-MFSVM
CSTR:
Author:
Affiliation:

Clc Number:

Fund Project:

  • Article
  • |
  • Figures
  • |
  • Metrics
  • |
  • Reference
  • |
  • Related
  • |
  • Cited by
  • |
  • Materials
  • |
  • Comments
    Abstract:

    There is a large amount of unstructured data in the current corn cross-border supply chain system and it has the characteristics of multi-source heterogeneous. Traditional risk early warning methods have defects such as over-reliance on manual decision-making and low accuracy of early warning. In order to solve the above problems, this paper proposed a system risk early warning method of corn cross-border supply chain based on deep belief network and multi-class fuzzy support vector machine. Firstly, based on the principle of embedding coding and normalization, a large number of unstructured data in the corn cross-border supply chain system were preprocessed and converted into structured data for subsequent calculation. Then, based on the deep belief network, the high-latitude features of the data were extracted, and the change trend and correlation of risk indicators in the corn cross-border supply chain system were adaptively mined. Finally, the extracted high-dimensional features were input into the multi-class fuzzy support vector machine model for training to realize the risk classification early warning of corn cross-border supply chain. The accuracy of the algorithm proposed in this paper can reach 94.88% under the condition of similar running time. It is 52.17% higher than that of the worst algorithm, and the comprehensive performance was superior to other algorithms which can provide theoretical support for the application of system risk regulation of corn cross-border supply chain.

    Reference
    Related
    Cited by
Get Citation
Related Videos

Share
Article Metrics
  • Abstract:
  • PDF:
  • HTML:
  • Cited by:
History
  • Received:
  • Revised:
  • Adopted:
  • Online: September 25,2024
  • Published:
Article QR Code