SCIENCE AND TECHNOLOGY OF CEREALS, OILS AND FOODS

Chinese Science Citation Database (CSCD)
A Guide to the Core Journals of China (2023)
The Key Magazine of China Science and Technology
"2022、2023 Bilingual Communication Project for Chinese STM Journals"
"2022、2024 China Fine Periodical Exhibition"
Elsevier-Scopus Database
Directory of Open Access Journals (DOAJ)
EBSCO Research Database
Chemical Abstracts (CA)
Food Science and Technology Abstract (FSTA)
CAB International (CABI) Database
Japan Science and Technology Agency (Chinese Bibliographic Database) (JSTChina)
Ulrich’s Periodicals Directory (UPD)

Synthesis and Application of Zearalenone Substitute Cyclododecyl 2,4-Dihydroxybenzoate(Online First, Recommended Article)
DOI:
Author:
Affiliation:

Clc Number:

Fund Project:

  • Article
  • |
  • Figures
  • |
  • Metrics
  • |
  • Reference
  • |
  • Related
  • |
  • Cited by
  • |
  • Materials
  • |
  • Comments
    Abstract:

    Cyclododecyl 2,4-dihydroxybenzoate (CDHB) is very similar to zearalenone (ZEN) in terms of size, shape, steric conformation and property. It is commonly used as a template of ZEN for the preparation of molecularly imprinted polymers. N’N′-carbonyldiimidazole (CDI) and 1,8-diazabicyclo [5.4.0] Decacarbonyl-7-ene (DBU) are added in the reaction substrate as the activator and catalyst respectively to ensure the yield of CDHB. This study compares three different purification methods of column chromatography, high-speed countercurrent chromatography and preparative liquid chromatography. The method of preparative liquid chromatography obtained the highest purity product (≥98%), followed by the method of high-speed countercurrent chromatography. Based on different production requirements, all three methods can be used for the systematic preparation process. Structure of CDHB was confirmed by FTIR, UV-Vis, 1H NMR, 13C NMR and MS (ESI), which proved the method of CDHB synthesis was repeatable and stable. The yield of CDHB was over 70%. In terms of application, CDHB was introduced into graphene carriers during the preparation of molecularly imprinted polymers, which can greatly improve the selective adsorption capacity of molecularly imprinted polymer to ZEN. The kinetic adsorption behavior of adsorbent followed the pseudo-second-order kinetic model.

    Reference
    Related
    Cited by
Get Citation
分享
Article Metrics
  • Abstract:
  • PDF:
  • HTML:
  • Cited by:
History
  • Received:
  • Revised:
  • Adopted:
  • Online: July 29,2021
  • Published: