

DOI: 10.16210/j.cnki.1007-7561.2021.02.011

赵晓燕, 张彬, 李倩, 等. 优质小米三级中红外光谱研究[J]. 粮油食品科技, 2021, 29(2): 81-87.

ZHAO X Y, ZHANG B, LI Q, et al. Research on quality millet by the three-step MIR spectroscopy[J]. Science and Technology of Cereals, Oils and Foods, 2021, 29(2): 81-87.

优质小米三级中红外光谱研究

赵晓燕¹,张 彬²,李 倩¹,沙淑莉¹,李丹丹¹,周冠霖¹,肖 霄²,于宏伟²⊠

(1. 河北泰斯汀检测技术服务有限公司,河北 石家庄 050021;
2. 石家庄学院 化工学院,河北 石家庄 050035)

摘 要:采用中红外(MIR)光谱分别开展山东、山西和河北等地五种小米的光谱特征研究。结果 表明:小米的红外吸收模式主要包括 OH 伸缩振动模式(v_{OH})、CH₃不对称伸缩振动模式(v_{asCH3})、 CH₂不对称伸缩振动模式(v_{asCH2})、CH₂对称伸缩振动模式(v_{sCH2})、CH 伸缩振动模式(v_{cH})、C=O 伸缩振动模式(v_{c=0})、酰胺 I 带吸收模式(v_{amide-1})、酰胺 II 带吸收模式(v_{amide-II})、酰胺 II 带吸收 模式(v_{amide-II})及 C-O 伸缩振动模式(v_{c-0});进一步以小米 v_{asCH3-=#}、v_{asCH2-=#}、v_{sCH2-=#}和 v_{CH-=#}为 研究对象,小米相应的同步 2D-MIR 光谱存在着一定的差异性,可以快速准确地鉴别上述五种小米。 研究拓展了三级 MIR 光谱技术在优质小米结构及快速鉴别的研究范围。 关键词:小米;一维 MIR 光谱;二阶导数 MIR 光谱;同步 2D-MIR 光谱;快速鉴别

中图分类号: TS210.7; O434.3 文献标识码: A 文章编号: 1007-7561(2021)02-0081-07 网络首发时间: 2021-01-29 13:45:44

网络首发地址: http://kns.cnki.net/kcms/detail/11.3863.TS.20210129.1120.006.html

Research on Quality Millet by the Three-step MIR Spectroscopy

ZHAO Xiao-yan¹, ZHANG Bin², LI Qian¹, SHA Shu-li¹, LI Dan-dan¹, ZHOU Guan-lin¹, XIAO Xiao², YU Hong-wei²

(1. Hebei Global Testing Technologies Limited, Shijiazhuang, Hebei 050021, China;
 2. Shijiazhuang University, School of Chemical Engineering, Shijiazhuang, Hebei 050035, China)

Abstract: The structures of five kinds of millet from Shandong, Shanxi, Hebei and other provinces were studied by mid infrared (abbreviation: MIR) spectroscopy. The results showed that the infrared absorption modes of millet mainly include OH stretching vibration mode (v_{OH}), CH₃ asymmetrical stretching vibration mode (v_{asCH3}), CH₂ asymmetrical stretching vibration mode (v_{asCH2}), CH₂ asymmetrical stretching vibration mode (v_{csCH2}), CH₂ symmetrical stretching vibration mode (v_{csCH2}), CH stretching vibration mode (v_{cH}), C=O stretching vibration mode ($v_{c=O}$), protein amide I band mode ($v_{amide-II}$), protein amide II band mode ($v_{amide-II}$), protein amide II band mode (v_{c-O}). Furthermore, the corresponding synchronous 2D-MIR spectroscopy of millet, including v_{asCH3} -2d, v_{asCH2} -2d and v_{CH} -2d, have some differences, which can quickly and accurately identify the five kinds of millets. This paper expanded the research scope of three-step MIR

Supported by: Science and Technology Research and development programme in Shijiazhuang (NO. 191490993)

作者简介:赵晓燕,女,1970年出生,工程师,研究方向为食品检测技术与应用。E-mail: yhw0411@163.com.

收稿日期: 2020-08-23

基金项目: 石家庄市科学技术研究与发展计划课题(191490993)

通讯作者:于宏伟,男,1979年出生,博士,教授,研究方向为红外光谱的理论研究。E-mail:yhw0411@163.com.

spectroscopy in structure and rapid identification of high-quality millet.

Key words: millet; one-dimensional MIR spectroscopy; second derivative MIR spectroscopy; synchronous 2D-MIR spectroscopy; rapid identification

小米营养价值高,富含碳水化合物、蛋白质及 氨基酸、脂肪酸、维生素、矿物质等营养成分^[1-5]。 食用小米有养益气、补肾气的作用,因此小米, 特别是一些优质小米深受广大消费者的欢迎。济 南龙山小米、济宁金小米、长治市黄小米和张家 口桃花小米是我国"四大著名小米"。"四大著名小 米",品质优良,但产量有限,因此市场上假冒产 品较多。传统优质小米鉴别多靠消费者凭借小米 颜色、小米气味、小米口感等感官鉴别,误差性 较大。现有检测仪器对于小米的鉴别研究主要包 括高光谱^[6]和近红外光谱^[7-9]。高光谱法仪器较特 殊,使用繁琐,而近红外光谱法需采集大量小米 原始实验数据,并建立复杂的数学模式。中红外 (MIR)光谱具有快速准确的优点,广泛应用于 有机物结构研究工作^[10-13],但对天然产物谱图分 辨能力不高,因此小米的鉴别研究少见报道。同 步 2D-MIR 光谱是一种较为新型的 MIR 光谱技 术^[14-18],广泛应用于蛋白质结构、酰胺类高分子 结构、糖及纤维素结构等领域,其谱图分辨能力 要优于相应的 MIR 光谱, 但小米的结构鉴别研究 未见报道。因此,本课题采用三级 MIR 光谱,分 别开展华北及华东地区优质小米的结构和快速鉴 别研究工作,具有重要的应用研究价值。

1 材料与方法

1.1 实验材料

龙山小米:山东省济南市;金小米:山东省 济宁市金乡县;黄小米:山西省长治市沁县;桃 花小米:河北省张家口市蔚县;红谷小米:河北 省石家庄市藁城区。

1.2 实验仪器

Spectrum 100 傅里叶中红外光谱仪:美国 PE 公司; Golden Gate ATR-FTIR 附件: 英国 Specac 公司。

1.3 红外光谱检测

红外光谱实验以空气为背景,每次对于信号进行8次扫描累加。测温范围303~393 K(变温

步长 10 K)。小米的一维 MIR 及二阶导数 MIR 光 谱数据采用 PE 公司 Spectrum v 6.3.5 操作软件(其 中二阶 MIR 光谱的平滑点为 13),小米的同步 2D-MIR 光谱数据采用清华大学 TD Versin 4.2 软件。

2 结果与分析

2.1 小米一维 MIR 光谱研究

研究发现: 五种小米的一维 MIR 光谱非常类 似,这主要是因为五种小米的化学成分相同,都 含有蛋白质、淀粉、脂肪、水溶性多糖等营养物 质,本文以龙山小米一维 MIR 光谱为例(图 1A), 开展系列小米的结构研究。其中 3 287.28 cm⁻¹ 频率处的吸收峰是龙山小米 OH 伸缩振动模式 (v_{OH-龙山小米-一维}); 2 926.33 cm⁻¹ 频率处的吸收峰是 龙山小米 CH2 不对称伸缩振动模式(vasCH2-龙山小米--维); 2 855.58 cm⁻¹ 频率处的吸收峰是龙山小米 CH₂ 对 称伸缩振动模式 (v_{sCH2-龙山小米--维}); 1 743.50 cm⁻¹ 频率处的吸收峰是龙山小米 C==O 伸缩振动模式 $(v_{C=O-$ 龙山小米--维}); 1 647.38 cm⁻¹ 和 1 638.18 cm⁻¹ 频率处的吸收峰是龙山小米酰胺 | 带吸收峰 (*v*_{amide-1-龙山小米--维}); 1 538.44 cm⁻¹ 频率处的吸收 峰是龙山小米酰胺Ⅱ带吸收峰(vamide-Ⅱ-龙山小米---维); 1 241.33cm⁻¹ 频率处的吸收峰是龙山小米酰胺Ⅲ 带吸收峰 (vamide-W-龙山小米--维); 1 077.06 cm⁻¹ 和 997.39 cm⁻¹ 频率处的吸收峰是龙山小米 C-O 伸 缩振动模式(vc-o-#山小米--维),其它小米的一维 MIR 光谱数据见表1。

2.2 小米二阶导数 MIR 光谱研究

以龙山小米的二阶导数 MIR 光谱为例(图 2A),开展了系列小米的结构研究,其谱图分辨 能力要优于相应的一维 MIR 光谱。其中 2925.27 cm⁻¹频率处的吸收峰是龙山小米 CH₂不 对称伸缩振动模式(v_{asCH2- 龙山小来-二阶导数}); 2853.65 cm⁻¹频率处的吸收峰是龙山小米 CH₂对 称伸缩振动模式(v_{sCH2- 龙山小来-二阶导数});1746.81 cm⁻¹ 和 1710.80 cm⁻¹ 频率处的吸收峰是龙山小米 C==O 伸缩振动模式($v_{c=O-$ 龙山小来-二阶导数});1692.16、

图 1 小米一维 MIR 光谱(303 K) Fig.1 One-dimensional MIR spectrum of millet (303 K)

表 1 小米的一维 M	IR 光谱数据(303 K)
-------------	----------------

	Table 1Data of one-dimensional MIR spectrum of millet (303 K) cm^{-1} (A)
小米种类	小米一维 MIR 光谱吸收频率及强度
龙山小米	3 287.28 (0.15), 2 926.33 (0.10), 2 855.58 (0.07), 1 743.50 (0.03), 1 647.38 (0.12), 1 638.18 (0.12), 1 538.44 (0.07), 1 534.83 (0.07), 1 529.06 (0.07), 1 241.33 (0.08), 1 077.06 (0.22), 997.39 (0.40);
金小米	3 290.19 (0.20), 2 927.69 (0.12), 2 857.05 (0.08), 1 743.99 (0.03), 1 642.93 (0.13), 1 534.44 (0.07), 1 241.15 (0.10), 1 077.21 (0.31), 996.38 (0.61);
黄小米	3 288.22 (0.22), 2 927.22 (0.13), 2 856.23 (0.09), 1 743.54 (0.04), 1 639.14 (0.14), 1 535.16 (0.08), 1 519.20 (0.07), 1 241.74 (0.11), 1 077.26 (0.34), 997.00 (0.71);
桃花小米	3 289.32 (0.16), 2 928.85 (0.09), 2 857.05 (0.06), 1 746.33 (0.03), 1 641.91 (0.12), 1 638.20 (0.12), 1 543.94 (0.07), 1 535.00 (0.07), 1 241.21 (0.09), 1 077.16 (0.24), 996.87 (0.43);
红谷小米	3 278.32 (0.08), 2 926.28 (0.05), 2 855.09 (0.04), 1 743.67 (0.02), 1 637.43 (0.08), 1 534.61 (0.05), 1 239.28 (0.05),

1 682.65、1 654.49、1 638.94 和 1 627.61 cm⁻¹ 频率处的吸收峰是龙山小米酰胺 I 带吸收峰 (v_{amide-I-龙山小米-二阶导数}); 1 558.15、1 537.07 和 1 510.31 cm⁻¹频率处的吸收峰是龙山小米酰胺 II 带吸收峰 (v_{amide-II-龙山小米-二阶导数}); 1 240.00 cm⁻¹ 频率处的吸收峰是龙山小米酰胺Ⅲ带吸收峰 (v_{amide-Ⅲ-龙山小米-二阶导数}); 1 076.53、1047.63、 1016.17和990.92 cm⁻¹频率处的吸收峰是龙山小 米 C—O 伸缩振动模式 (v_{C-O-龙山小米-二阶导数}),其它 小米的二阶导数 MIR 光谱数据见表 2。

	表 2	小米的	二阶导数	女 MIR 光	谱数据(3	303 K)		
Table 2	Data	of seco	ıd deriv	ative M	R spectru	m of	millet	(303	K)

cm⁻¹ (A)

小米种类	小米二阶导数 MIR 光谱吸收频率及强度
龙山小米	$\begin{array}{c} 2\ 925.27\ (-0.00\),\ 2\ 853.65\ (-0.00\),\ 1\ 746.81\ (-0.00\),\ 1\ 710.80\ (-0.00\),\ 1\ 692.16\ (-0.00\),\ 1\ 682.65\ (-0.00\),\ 1\ 654.49\ (-0.00\),\ 1\ 638.94\ (-0.00\),\ 1\ 627.61\ (-0.00\),\ 1\ 558.15\ (-0.00\),\ 1\ 537.07\ (-0.00\),\ 1\ 510.31\ (-0.00\),\ 1\ 240.00\ (-0.00\),\ 1\ 654.49\ (-0.00\),\ 1\ 558.15\ (-0.00\),\ 1\ 537.07\ (-0.00\),\ 1\ 510.31\ (-0.00\),\ 1\ 240.00\ (-0.00\),\ 1\ 654.49\ (-0.00\),\ 1\ 558.15\ (-0.00\),\ 1\ 537.07\ (-0.00\),\ 1\ 510.31\ (-0.00\),\ 1\ 240.00\ (-0.00\),\ 1\ 654.49\ (-0.00\),\ 1\ 558.15\ (-0.00\),\ 1\ 537.07\ (-0.00\),\ 1\ 510.31\ (-0.00\),\ 1\ 240.00\ (-0.00\),\ 1\ 558.15\ (-0.00\),\ 1\ 558\),\ 1\ 0\),\ 1\ 558\),\ 1\ 0\),\ 1\ 0\),\ 1\ 0\$
金小米	$\begin{array}{l} 2\ 926.70\ (\ -0.00\),\ 2\ 854.56\ (\ -0.00\),\ 1\ 746.90\ (\ -0.00\),\ 1\ 711.64\ (\ -0.00\),\ 1\ 692.04\ (\ -0.00\),\ 1\ 660.24\ (\ -0.00\),\ 1\ 639.32\ (\ -0.00\),\ 1\ 628.00\ (\ -0.00\),\ 1\ 548.93\ (\ -0.00\),\ 1\ 512.43\ (\ -0.00\),\ 1\ 239.86\ (\ -0.00\),\ 1\ 076.84\ (\ -0.00\),\ 1\ 047.58\ (\ $
黄小米	$\begin{array}{l} 2\ 926.22\ (\ -0.00\),\ 2\ 889.74\ (\ -0.00\),\ 2\ 854.14\ (\ -0.00\),\ 1\ 745.95\ (\ -0.00\),\ 1\ 710.81\ (\ -0.00\),\ 1\ 692.07\ (\ -0.00\),\ 1\ 682.17\ (\ -0.00\),\ 1\ 651.08\ (\ -0.00\),\ 1\ 639.09\ (\ -0.00\),\ 1\ 627.95\ (\ -0.00\),\ 1\ 546.50\ (\ -0.00\),\ 1\ 510.82\ (\ -0.00\),\ 1\ 239.90\ (\ -0.00\),\ 1\ 682.17\ (\ -0.00\),\ 1\ 510.82\ (\ -0.00\),\ 1\ 239.90\ (\ -0.00\),\ 1\ 682.17\ (\ -0.00\),\ 1\ 510.82\ (\ -0.00\),\ 1\ 239.90\ (\ -0.00\),\ 1\ 682.17\ (\ -0.00\),\ 1\ 510.82\ (\ -0.00\),\ 1\ 239.90\ (\ -0.00\),\ 1\ 682.17\ (\ -0.00\),\ 1\ 510.82\ (\ -0.00\),\ 1\ 239.90\ (\ -0.00\),\ 1\ 682.17\ (\ -0.00\),\ 1\ 510.82\ (\ -0.00\),\ 1\ 239.90\ (\ -0.00\),\ 1\ 682.17\ (\ -0.00\),\ 1\ 510.82\ (\ -0.00\),\ 1\ 239.90\ (\ -0.00\),\ 1\ 682.17\ (\ -0.00\),\ 1\ 510.82\ (\ -0.00\),\ 1\ 239.90\ (\ -0.00\),\ 1\ 682.17\ (\ -0.00\),\ 1\ 510.82\ (\ -0.00\),\ 1\ 239.90\ (\ -0.00\),\ 1\ 682.17\ (\ -0.00\),\ 1\ 510.82\ (\ $
桃花小米	$\begin{array}{l} 2\ 929.50\ (\ -0.00\),\ 2\ 854.21\ (\ -0.00\),\ 1\ 747.04\ (\ -0.00\),\ 1\ 712.73\ (\ -0.00\),\ 1\ 692.02\ (\ -0.00\),\ 1\ 681.91\ (\ -0.00\),\ 1\ 638.81\ (\ -0.00\),\ 1\ 627.84\ (\ -0.00\),\ 1\ 556.54\ (\ -0.00\),\ 1\ 546.34\ (\ -0.0\)\ 0,\ 1\ 511.86\ (\ -0.00\),\ 1\ 240.00\ (\ -0.00\),\ 1\ 076.72\ (\ -0.00\),\ 1\ 047.00\ (\ -0.00\),\ 1\ 016.28\ (\ -0.00\),\ 990.60\ (\ -0.00\); \end{array}$
红谷小米	2 927.00 (-0.00), 2 853.69 (-0.00), 1 744.09 (-0.00), 1 653.98 (-0.00), 1 638.50 (-0.00), 1 617.22 (-0.00), 1 511.84 (-0.00), 1 237.50 (-0.00), 1 076.26 (-0.00), 1 047.20 (-0.00), 1 016.00 (-0.00), 990.92 (-0.00);

2.3 小米的同步 2D-MIR 光谱研究

小米由于在 3 000~2 800 cm⁻¹频率范围内, 具有丰富的 MIR 光谱信息(包括: *v*_{asCH3-小*-二维}、 *v*_{asCH2-小*-二维}、*v*_{sCH2-小*-二维}和 *v*_{CH-小*-二维}),因此进一 步分别开展了龙山小米(图 3)、金小米(图 4)、 黄小米(图 5)、桃花小米(图 6)和红谷小米(图 7)的同步 2D-MIR 光谱研究。同步 2D-MIR 光 谱的谱图分辨能力优于传统的一维 MIR 光谱和二 阶导数 MIR 光谱。同步 2D-MIR 光谱包括:自动 峰和交叉峰。自动峰是对角线上的峰,其相对强 度代表该频率处的官能团对于物理扰动因素(热) 的敏感程度。交叉峰是对角线以外的峰,其相对 强度代表两个官能团之间存在着较强的分子内或 分子间相互作用。

2.3.1 龙山小米 2D-MIR 光谱研究

在 3 000~2 800 cm⁻¹ 频率范围内,开展了龙 山小米的同步 2D-MIR 光谱研究(图 3)。首先 在(2 850 cm⁻¹, 2 850 cm⁻¹)、(2 900 cm⁻¹, 2 900 cm⁻¹)、(2 916 cm⁻¹, 2 916 cm⁻¹)和 (2 940 cm⁻¹, 2 940 cm⁻¹)频率附近发现四个相 对强度较大的自动峰,其中(2 940 cm⁻¹, 2 940 cm⁻¹) 频率处的自动峰强度最大,则证明该频率处的吸收峰对应的官能团对于温度变化比较敏感,而(2900 cm⁻¹,2900 cm⁻¹)则归属于龙山小米 C—H伸缩振动模式对应的自动峰(v_{CH-龙山小米-二维})。实验在(2850 cm⁻¹,2900 cm⁻¹)、(2850 cm⁻¹,2940 cm⁻¹)和(2900 cm⁻¹,2940 cm⁻¹)频率范围内发现三个相对强度较大的交叉峰,则进一步证明:龙山小米 v_{asCH2-龙山小米-二维}和 v_{CH-龙山小米-二维}对应的官能团之间存在着较强的分子内相互作用。

图 3 龙山小米同步 2D-MIR 光谱 (3 000~2 800 cm⁻¹) Fig.3 Synchronous 2D-MIR spectrum of longshan-millet (3 000~2 800 cm⁻¹)

2.3.2 金小米 2D-MIR 光谱研究

在 3 000~2 800 cm⁻¹ 频率范围内,开展了金小 米的同步 2D-MIR 光谱研究(图 4)。首先在 (2 852 cm⁻¹, 2 852 cm⁻¹)、(2 890 cm⁻¹, 2 890 cm⁻¹)、(2 922 cm⁻¹, 2 922 cm⁻¹)和 (2 945 cm⁻¹, 2 945 cm⁻¹)频率附近发现四个相 对强度较大的自动峰,其中(2 852 cm⁻¹, 2 852 cm⁻¹)频率处的自动峰强度最大,则证明该 频率处的吸收峰对应的官能团对于温度变化比较 敏感,而(2 890 cm⁻¹, 2 890 cm⁻¹)则归属于金小 米 C—H 伸缩振动模式对应的自动峰(*v*_{CH-金小*-二维})。 实验在(2 852 cm⁻¹, 2 922 cm⁻¹)和(2 890 cm⁻¹, 2 945 cm⁻¹)频率范围内,发现二个相对强度较大 的交叉峰,则进一步证明:金小米*v*_{asCH2-金小*-二维}、 *v*_{sCH2-金小*-二维}和*v*_{CH-金小*-二维}对应的官能团之间存在 着较强的分子内相互作用。

图 4 金小米同步 2D-MIR 光谱 (3 000~2 800 cm⁻¹) Fig.4 Synchronous 2D-MIR spectrum of gold-millet (3 000~2 800 cm⁻¹)

2.3.3 黄小米 2D-MIR 光谱研究

在 3 000~2 800 cm⁻¹ 频率范围内,开展了黄小 米的同步 2D-MIR 光谱研究(图 5)。首先在(2 853 cm⁻¹, 2 853 cm⁻¹)、(2 885 cm⁻¹, 2 885 cm⁻¹)、 (2 923 cm⁻¹, 2 923 cm⁻¹)、(2 950 cm⁻¹, 2 950 cm⁻¹)、(2 960 cm⁻¹, 2 960 cm⁻¹)和 (2 975 cm⁻¹, 2 975 cm⁻¹)频率附近发现六个相 对强度较大的自动峰,其中(2 853 cm⁻¹, 2 853 cm⁻¹)频率处的自动峰强度最大,则证明该 频率处的吸收峰对应的官能团对于温度变化比较 敏感,(2 885 cm⁻¹, 2 885 cm⁻¹)则归属于黄小米 CH 伸缩振动模式对应的自动峰(*v*_{CH-黄小*-二维}), (2960 cm⁻¹, 2960 cm⁻¹)归属于黄小米 CH₃不 对称伸缩振动模式对应的自动峰(*v*_{asCH3-黄小*-二维})。 实验在(2853 cm⁻¹, 2923 cm⁻¹)、(2885 cm⁻¹, 2950 cm⁻¹)、(2885 cm⁻¹, 2975 cm⁻¹)、(2923 cm⁻¹, 2960 cm⁻¹)和(2950 cm⁻¹, 2975 cm⁻¹)频率 范围内,发现五个相对强度较大的交叉峰,则 进一步证明:黄小米 *v*_{asCH2-黄小*-二维}对应的官能团之间 存在着较强的分子内相互作用。

图 5 黄小米同步 2D-MIR 光谱 (3 000~2 800 cm⁻¹) Fig.5 Synchronous 2D-MIR spectrum of yellow-millet (3 000~2 800 cm⁻¹)

2.3.4 桃花小米 2D-MIR 光谱研究

在 3 000~2 800 cm⁻¹ 频率范围内,开展了桃花 小米的同步 2D-MIR 光谱研究(图 6)。首先在 (2 852 cm⁻¹, 2 852 cm⁻¹)、(2 892 cm⁻¹, 2 892 cm⁻¹)、(2 942 cm⁻¹, 2 942 cm⁻¹)频率附近发 现三个相对强度较大的自动峰,其中(2 852 cm⁻¹, 2 852 cm⁻¹)频率处的自动峰强度最大,则证明 该频率处的吸收峰对应的官能团对于温度变化 比较敏感,而(2 892 cm⁻¹, 2 892 cm⁻¹)则归属 于桃花小米 C—H 伸缩振动模式对应的自动峰 (*v*_{CH-桃花小米-二维})。实验在(2 852 cm⁻¹, 2 892 cm⁻¹)、 (2 852 cm⁻¹, 2 942 cm⁻¹)和(2 892 cm⁻¹)、 (2 852 cm⁻¹, 2 942 cm⁻¹)和(2 892 cm⁻¹, 2 942 cm⁻¹)频率范围内,发现三个相对强度较大 的交叉峰,则进一步证明:桃花小米 *v*_{asCH2-桃花小米-二维} 和 *v*_{CH-桃花小米-二维}对应的官能团之间存在着较强的 分子内相互作用。

2.3.5 红谷小米 2D-MIR 光谱研究

在 3 000~2 800 cm⁻¹ 频率范围内, 开展了红谷 小米的同步 2D-MIR 光谱研究(图 7)。首先在 (2 850 cm⁻¹, 2 850 cm⁻¹)、(2 920 cm⁻¹, 2 920 cm⁻¹)和(2 943 cm⁻¹, 2 943 cm⁻¹)频率附 近发现三个相对强度较大的自动峰, 其中 (2 920 cm⁻¹, 2 920 cm⁻¹)频率处的自动峰强度 最大,则证明该频率处的吸收峰对应的官能团对 于温度变化比较敏感。而在(2 850 cm⁻¹, 2920 cm⁻¹)频率范围内,发现一个相对强度较大 的交叉峰,则进一步证明:红谷小米 v_{asCH2-红谷小米-二维} 和 v_{sCH2-红谷小米-二维}对应的官能团之间存在着较强的 分子内相互作用。五种小米的相关同步 2D-MIR 光谱数据见表 3。

 Fig.7
 Synchronous 2D-MIR spectrum of honggu-millet (3 000~2 800 cm⁻¹)

表 3 小米的同步 2D-MIR 光谱数据(3 000~2 800 cm⁻¹)

Table 3 Data of Synchronous 2D-MIR spectrum of millet (3 000~2 800 cm⁻¹)cm⁻¹, cm⁻¹

小米种类	自动峰	交叉峰
龙山小米	(2850, 2850), (2900, 2900), (2916, 2916), (2940, 2940)	(2850, 2900), (2850, 2940)(2900, 2940)
金小米	(2852, 2852), (2890, 2890), (2922, 2922), (2945, 2945)	(2852, 2922), (2890, 2945)
黄小米	(2853, 2853), (2885, 2885), (2923, 2923), (2950, 2950), (2960, 2960), (2975, 2975)	(2853, 2923), (2885, 2950), (2885, 2975), (2923, 2960), (2950, 2975)
桃花小米	(2852, 2852), (2892, 2892), (2942, 2942)	(2852, 2892), (2852, 2942), (2892, 2942)
红谷小米	(2850, 2850), (2920, 2920), (2943, 2943)	(2850, 2920)

由表 3 数据可知,小米相应的同步 2D-MIR 光谱存在着一定的差异性。这主要是因为不同产 地的小米,由于生长环境的不同,其油脂含量及 种类有一定的差异性,而其对应的红外吸收峰 (*v*_{asCH3-=}[#]、*v*_{asCH2-=}[#]、*v*_{sCH2-=}[#]和 *v*_{CH-=}[#])对于 物理扰动因素(热)的敏感程度及相互作用关系 存在着较大的差异性,因而可以快速有效的鉴别 上述五种小米。

3 结论

小米的红外吸收模式包括:v_{OH}、v_{asCH3}、v_{asCH2}、 v_{sCH2}、v_{CH}、v_{C=O}、v_{amide-1}、v_{amide-II}、v_{amide-II}和 v_{C-O}。 在 303~393 K 的温度范围内,小米(v_{asCH3}-^{二维}、 *vas*CH2-二继、*vs*CH2-二继和*v*CH-二维)对应的红外吸收峰显示出不同的敏感程度及相互作用关系。本文拓展了三级MIR光谱在优质小米结构及快速鉴别的应用范围,具有重要的应用研究价值。

参考文献:

- 冯小磊, 史高雷, 张晓磊, 等. 不同小米品种氨基酸与脂肪酸 营养含量分析[J]. 食品工业, 2020, 41(7): 340-344.
 FENG X L, SHI G G, ZHANG X L, et al. Analysis of amino acid and fatty acid contents in different varieties of millet[J]. The Food Industry, 2020, 41(7): 340-344.
- [2] 梁克红,朱大洲,孙君茂,等. 有机小米与普通小米的营养物 质比较[J]. 贵州农业科学, 2016,44(8):127-130.
 LIANG K H, ZHU D Z, SUN J M, et al. Comparison of nutrients in organic millet and traditional millet[J]. Guizhou Agricultural

Sciences, 2016, 44(8): 127-130.

- [3] 王军锋,周显青,张玉荣.小米的营养特性与保健功能及产品开发[J].粮食加工,2012,37(3):60-63.
 WANG J F, ZHOU X Q, ZHANG Y R. Nutritive characteristics, health functions and product development of millet[J]. Grain Processing, 2012, 37(3): 60-63.
- [4] 张爱霞,张佳丽,赵巍,等. 小米蛋白提取及营养评价[J]. 食品科技, 2019, 44(8): 223-227.
 ZHANG A X, ZHANG J L, ZHAO W, et al. Isolation and nutritional characterization of millet protein[J]. Food Science and Technology, 2019, 44(8): 223-227.
- [5] 张竹青,马金成,闫巧凤. 糙小米组织结构与营养成分分析 研究[J]. 食品研究与开发,2014,35(6):96-98.
 ZHANG Z Q, MA J C, YAN Q F. Rough millet tissue structure and nutrition analysis and research[J]. Food Research and Developent, 2014, 35(6): 96-98.
- [6] 吉海彦,任占奇,饶震红.基于高光谱成像技术的不同产地 小米判别分析[J].光谱学与光谱分析,2019,39(7):2271-2277. JI H Y, REN Z Q, RAO Z H. Discriminant analysis of millet from different origins based on hyperspectral imaging technology[J]. Spectroscopy and Spectral Analysis, 2019, 39(7): 2271-2277.
- [7] 宋雪健, 王欣卉, 李琳. 近红外光谱技术对小米品种的快速 鉴别[J]. 粮食科技与经济, 2019, 44(10): 97-99.
 SONG X J, WANG X H, LI L. Rapid Identification of millet varieties by near Infrared Spectroscopy[J]. Grain Science and Technology and Economy, 2019, 44(10): 97-99.
- [8] 钱丽丽,宋雪健,类彦波,等.近红外漫反射光谱技术对小米 产地的快速检测[J]. 食品工业, 2018, 39(6): 257-261. QIAN L L, SONG X J, LEI Y B, et al. Rapid detection of millet origin by near infrared diffuse reflectance spectroscopy[J]. The Food Industry, 2018, 39(6): 257-261.
- [9] 宋雪健, 钱丽丽, 周义, 等. 近红外漫反射光谱技术对小米产 地溯源的研究[J]. 食品研究与开发, 2017, 38(11): 134-139.
 SONG X J, QIAN L L, ZHOU Y, et al. Study on traceability of millet origin by near infrared diffuse reflectance spectroscopy[J].
 Food Research and Development, 2017, 38(11): 134-139.
- [10] 王维, 张蕊, 戎媛, 等. 汉麻及剑麻纤维红外光谱研究[J]. 纺 织科学与工程学报, 2020, 37(3): 44-49.
 WANG W, ZHANG R, RONG Y, et al. Infrared spectroscopy study on hemp fiber and sisal fiber[J]. Journal of Textile Science & Engineering, 2020, 37(3): 44-49.
- [11] 李中秋, 解立斌, 杜林楠, 等. Parafilm 的结构及热稳定性研

究[J]. 包装工程, 2018, 39(1): 79-83.

LI Z Q, XIE L B, DU L N, et al. The structure and thermal stability of parafilm[J]. Packaging Engineering, 2018, 39(1): 79-83.

- [12] 张雨萱,于卉,李吉纳,等. 丙纶结构及热稳定性研究[J]. 纺 织科学与工程学报, 2020, 37(2):70-73+84.
 ZHANG Y X, YU H, LI J N, et al. Structure and thermal stability of polypropylene[J]. Journal of Textile Science & Engineering, 2020, 37(2): 70-73+84.
- [13] 于宏伟, 戎媛, 王雪琪, 等. 玻璃布纤维涂层结构研究[J]. 纺 织科学与工程学报, 2020, 37(3): 50-55.
 YU H W, RONG Y, WANG X Q, et al. Study on coating structure of glass cloth fiber[J]. Journal of Textile Science & Engineering, 2020, 37(3): 50-55.
- [14] 赵莱含,张莹,王慧慧,等.小米蛋白质三级红外光谱研究
 [J]. 伊犁师范学院学报(自然科学版), 2019, 13(3): 38-43.
 ZHAO M H, ZHANG Y, WANG H H, et al. Study on millet protein by third-stage infrared spectroscopy[J]. Journal of Ili Normal University (Natural Science Edition), 2019, 13(3): 38-43.
- [15] 于宏伟,胡梦璇,封卓帆,等.葡萄糖漫反射三级近红外光谱研究[J].中国甜菜糖业,2020(1):8-15.
 YU H W, HU M X, FENG Z F, et al. Diffuse reflection three-step near-infrared spectroscopy of glucose[J]. China Beet & Sugar, 2020(1): 8-15.
- [16] 武玉洁,常明,杨若冰,等. 涤纶晶体结构三级红外光谱研究
 [J]. 红外技术,2020,42(6):589-597.
 WU Y J, CHANG M, YANG R B, et al. Three-step infrared spectrum of dacron crystal structure[J]. Infrared Technology, 2020,42(6):589-597.
- [17] 于宏伟,马思怡,陈新乐,等. 微晶纤维素结构及鉴别研究
 [J]. 西安文理学院学报(自然科学版), 2020, 23(3): 82-87.
 YU H W, MA S Y, CHEN X L, et al. Reseach on the structure and identification of avicel[J]. Journal of Xi'an University (Natural Science Edition), 2020, 23(3): 82-87.
- [18] 武玉洁,王丽欣,封卓帆,等.大米蛋白质酰胺 Ⅲ 带三级红 外光谱研究[J]. 湖南文理学院学报(自然科学版), 2020, 32(1): 12-16.

WU Y J, WANG L X, FENG Z F, et al. Study on rice protein amide-III band by third-stage infrared spectrum[J]. Journal of Hunan University of Arts and Science (Natural Science Edition), 2020, 32(1): 12-16. ⊕

备注:本文的彩色图表可从本刊官网(http://lyspkj.ijournal.cn/ch/index.axpx)、中国知网、万方、维普、超星等数据库下载获取。