

陈铭学研究员主持"稻米质量安全与品质评价"特约专栏文章之四

DOI: 10.16210/j.cnki.1007-7561.2023.06.004

杨欢, 许萍, 李洪艳, 等. 液相色谱--原子荧光光谱联用分析不同种类稻米中 4 种砷形态含量[J]. 粮油食品科技, 2023, 31(6): 28-34. YANG H, XU P, LI H Y, et al. Analysis of four arsenic species in different types of rice based on liquid chromatography-atomic fluorescence spectrometry[J]. Science and Technology of Cereals, Oils and Foods, 2023, 31(6): 28-34.

液相色谱--原子荧光光谱联用分析 不同种类稻米中4种砷形态含量

杨 欢1,许 萍1,李洪艳2,曹赵云1⊠

(1. 中国水稻研究所 农业农村部稻米及制品质量监督检验测试中心,浙江 杭州 310006;2. 贵州省联大检测技术有限公司,贵州 贵阳 550025)

摘 要:基于液相色谱-原子荧光光谱联用技术,建立了同时快速分析紫米、红米和普通糙米中As(Ⅲ)、As(V)、DMA和MMA4种砷形态的方法。对色谱条件进行优化,结果表明,以碳酸氢氨为流动相梯度洗脱,4种砷化物可在10min内获得基线分离。根据净化效果和吸附作用对石墨碳粉、石墨碳柱和C18柱三种吸附材料进行比较,结果发现,C18小柱能充分去除样品中的色素和大分子杂质。4种砷化物在0~50µg/L线性范围内具有良好的相关性,相关系数均大于0.9991,方法检出限和定量限分别为0.002~0.01 mg/kg和0.007~0.033 mg/kg。4种砷形态在各稻米基质中的三个水平添标回收率在75.2%~104%,相对标准偏差均小于9.9%。该方法适用于各种稻米中4种砷形态含量分析,为精准评估稻米砷摄入风险提供技术支持。

关键词: 稻米; 砷形态; 净化; 液相色谱-原子荧光光谱法

中图分类号: TS201.4; S-3 文献标识码: A 文章编号: 1007-7561(2023)06-0028-07

网络首发时间: 2023-11-09 18:27:25

网络首发地址: https://link.cnki.net/urlid/11.3863.TS.20231108.1315.004

Analysis of Four Arsenic Species in Different Types of Rice Based on Liquid Chromatography-Atomic Fluorescence Spectrometry

YANG Huan¹, XU Ping¹, LI Hong-yan², CAO Zhao-yun¹

(1. Rice Product Quality Supervision and Inspection Center, Ministry of Agriculture and Rural Affairs,

China National Rice Research Institute, Hangzhou, Zhejiang 310006, China;

2. Guizhou Lianda Testing Technology Co., Ltd, Guiyang, Guizhou 550025, China)

Abstract: A fast analytical protocol for the simultaneous analysis of As(III), As(V), DMA and MMA in purple rice, red rice and common brown rice was established based on liquid chromatography-atomic fluorescence spectrometry. For the first time, three mobile phases (i.e. KH_2PO_4 , $(NH_4)_2CO_3$ and NH_4HCO_3) were examined to obtain separation conditions. The results showed that NH_4HCO_3 is the most effective

Supported by: the Earmarked Fund for China Agriculture Research System (No. CARS-01-47)

作者简介:杨欢,女,1991年出生,博士,助理研究员,研究方向为农产品质量与安全。E-mail:15267498845@163.com

收稿日期: 2023-06-30

基金项目:国家水稻产业技术体系(CARS-01-47)

通讯作者:曹赵云,男,1981年出生,硕士,副研究员,研究方向为稻米营养品质和质量安全检测技术。E-mail: zhaoyun-605@163.com

eluent achieving the separation of As species with improved resolutions within 10 minutes. Bond elut carbon bulk, bond elut carbon and C_{18} were compared in view of their purification and adsorption capacities. The results showed that the C_{18} column can fully remove the pigment and macromolecular impurities. Four arsenic species had good linearity in the concentration ranging from 0 to 50 µg/L, and the correlation coefficients were all greater than 0.999 1. The limits of detection and the limits of quantification of the method were 0.002~0.01 mg/kg and 0.007~0.033 mg/kg, respectively. The recoveries of the four arsenic species at three spike levels in three rice matrices ranging from 75.2% to 104%, with the relative standard deviations is less than 9.9%. It is suitable for the analysis of the content of 4 arsenic species in various types of rice, and provides reliable technical support for accurately assessing the risk of arsenic intake in rice. **Key words:** rice; arsenic species; purification; liquid chromatography-atomic fluorescence spectrometry

砷(Arsenic, As)是农田土壤中广泛存在的有 毒类金属元素,是俗称的"五毒(铅、汞、镉、 铬、砷)"之一^[1]。土壤中砷可分为无机砷(inorganic arsenic, iAs)和有机砷(organic arsenic, oAs),但 三价砷(arsenite, As(Ⅲ))、五价砷(arsenate, As(V)), 一甲基砷(monomethylarsenic acid, MMA)和二 甲基砷(dimethyl arsenic, DMA)等不同形态砷毒 性迥异^[2]。其中,毒性较强的无机砷被国际癌症 研究委员会列为强致癌物^[3]。尽管多项研究认为 有机砷的毒性远小于无机砷,但一甲机砷和二甲 基砷也被明确为致癌物^[4]。因此,相对于单一测 定总砷含量,毒性砷形态含量分析更能满足食品 中砷摄入风险的精准评估要求。

大米被称誉为"五谷之首",是人类获取能量 及营养素的主要来源。然而,由于水稻的淹水种 植模式,导致水稻中积累的无机砷含量远高于其 他谷类作物^[5]。人体经稻米的砷摄入量占所有食 品无机砷摄入的 60%, 稻米及制品的安全性持续 受到社会的关注^[6]。为保障消费者的安全,我国 已建立了完善的食品中污染物限量标准,规定稻 谷、糙米、大米及婴幼儿谷类辅助食品中的无机 砷限量均为 0.2 mg/kg^[7]。但与美国、欧盟、CAC 的限量标准比较发现,美国和欧盟针对婴幼儿敏 感人群的谷类辅助食品制定了更加严格的控制标 准(无机砷含量不超过 0.1 mg/kg)^[8]。此外,随 着人们健康意识的增强,富含花青素的紫米和红 米也越来越受到青睐。《大米生产许可证审查细 则》(2006版)将无机砷列为紫米监督检验及发 证检验中的必检项目^[4]。因此,有必要建立一种

适用于各类稻米中砷形态的分析方法。

大米中不同形态的砷主要经甲醇、水、硝酸 溶液和磷酸盐缓冲液等试剂提取^[10],采用恒温加 热^[9]、超声^[4]、微波等方式萃取^[10-11],直接用离 子色谱^[12]、液相色谱-等离子体质谱^[4,13-16]和液相 色谱-原子荧光光谱^[9,10,15]技术测定。其中,液相 色谱-原子荧光光谱具有运行成本低、准确性高、 操作难度小等优点,广泛用于食品中无机砷的测 定。但基于液相色谱-原子荧光光谱的分析技术同 时实现各砷形态的高效分离仍然是一项具有挑战 性的任务。此外,大米中富含蛋白质等大分子, 尤其是紫米和红米中富含花青素也易与其他糖类 键合形成糖苷,样品净化可大大减小大分子蛋白 和色素等杂质对色谱柱和分析结果的干扰。而石 墨碳和 C₁₈ 材料可有效吸附样品基质中的色素和 非极性杂质,常用于有色样品的净化。

因此,本研究参考国内外的相关文献及标准 方法,比较了不同缓冲液对4种砷形态分离度的 影响,采用硝酸溶液提取各类大米的砷形态,比 较石墨碳粉、石墨碳黑小柱和 C₁₈柱3种净化材 料的净化效果和吸附损失,建立了同时分析紫米、 红米和糙米中4种砷形态的液相色谱-原子荧光 光谱联用检测方法。

1 材料与方法

1.1 试剂材料

盐酸(HCl, 优级纯)、硝酸(HNO₃, 优级纯)、 氨水(NH₃·H₂O, 优级纯):国药集团化学试剂有 限公司;硼氢化钾(KBH₄, 纯度≥98%)、氢氧 化钾(KOH,纯度≥99%)、碳酸氢氨(NH₄HCO₃, 纯度≥98%)、磷酸二氢钾(KH₂PO₄·3H₂O,纯度 ≥99%):上海阿拉丁生化科技股份有限公司;甲 醇(色谱级):德国默克公司;碳酸铵((NH₄)₂CO₃, 纯度≥99.9%):美国西格玛公司;石墨碳粉 (100 gm)、石墨碳柱(500 mg, 6 mL)、C₁₈柱 (100 mg, 3 mL):美国安捷伦科技公司;亚砷酸 盐(BWZ6808-2016, 1 000 μ g/mL)、砷酸盐 (BWZ6824-2016, 1 000 μ g/mL):北京伟业计量 技术研究院;一甲基砷(GBW08668, 0.335± 0.011 μ mol/g)、二甲基砷(GBW08668, 0.706± 0.024 μ mol/g):中国计量科学研究院;大米粉国 家标准物质 GBW(E)100361、GBW(E)100349:钢 研纳克检测技术股份有限公司。

1.2 仪器设备

液相色谱仪 Elspe-2: 广州谱临晟仪器有限公司; 原子荧光光谱仪 BAF 2000: 北京宝德仪器有限 公司; PAS-19 色谱柱(4.0 mm×250.0 mm, 5.0 μm)、 Princen 保护柱(4.6 mm × 50.0 mm, 10.0 μm): 广 州谱临晟仪器有限公司; 高速离心机: 美国 ThermoFisher 公司; 恒温箱: 上海精宏实验设备有 限公司; 纯水仪(18.2 MΩ): 美国 Millipore 公司; 千分之一天平: 美国 METTLER TOLEDO 公司。

1.3 液相色谱条件

液相色谱仪的流动相由 30 mmol /L 碳酸氢 氨(A相)和150 mmol/L 碳酸氢氨(B相)组成。 梯度洗脱程序设置为:0~102 s为100%A,103~ 241 s保持为100%B,242 s后切换成100%A。流 速:1.0 mL/min;进样量:50 μL。

1.4 原子荧光光谱仪条件

原子荧光光谱仪的负高压为 285 V,砷灯主阴 极电流为 50 mA,辅阴极电流为 50 mA,采样频 率为 5 Hz。以 5%盐酸溶液作为载流,0.5%氢氧 化钾和 1.5%硼氢化钾溶液为还原剂。采用氩气为 载气和辅助气,载气流速为 400 mL/min;辅助气 流速:900 mL/min。氢气发生器流量:120 mL/min。

1.5 样品前处理及净化

不同种类的稻米样品处理参照 GB 5009.11— 2014《第二篇 食品中无机砷的测定 第一法 液相 色谱-原子荧光光谱法》^[15]中进行。

石墨碳粉:称取 100 mg 石墨碳粉于 15 mL 离心管中,吸取 5 mL 样品提取液加入,充分振 荡混匀。4 000 r/min 离心 5min 后,取 2 mL 上清 液上机测定。

石墨碳柱:取出石墨碳柱,依次加入 10 mL 甲 醇和 10 mL 超纯水活化。将小柱放入新的离心管中, 吸取 5 mL 提取液加入小柱中,收集在离心管中。 将滤液全部过 0.46 μm 水相膜,上 HPLC-AFS 分析。

C₁₈: 将 C₁₈小柱放入离心管中,依次用 5 mL 甲醇和 5 mL 超纯水活化平衡,除去小柱内的杂 质并创造一定的溶剂环境。当小柱中的纯水液面 接近小柱填料时,将小柱放入新的离心管中,吸 取 2 mL 提取液加入小柱中,大部分目标化合物 会随样品基液流出,收集在离心管中。将滤液全 部过 0.46 µm 水相膜,上 HPLC-AFS 分析。

2 结果与分析

2.1 色谱条件选择

稻米中常见的砷类化合物在溶液中主要以阴 离子形式存在,目前已报道的研究主要是采用阴 离子色谱柱分离 As(Ⅲ)、As(Ⅴ)A、DMA 和 MMA 4 种砷形态^[4,9,10,13-16]。不同形态的砷在色谱柱上的 保留受洗脱液的种类、离子强度和 pH 等因素影 响^[17]。本实验结合相关文献[14,18],分别采用磷 酸二氢钾、碳酸铵和碳酸氢氨 3 种缓冲液分离测 定4种砷形态。结果如图1所示,对缓冲体系的 浓度和 pH 值进行优化后,3 种流动相可在 10 min 内将4种砷化物全部洗脱,但As(III)、As(V)和 DMA 在磷酸二氢钾和碳酸铵的洗脱条件下无法 实现基线分离。在碳酸氢铵的溶液中,As(III)主 要以中性分子 H₃AsO₃存在,在阴离子色谱柱上 保留较弱,而As(V)A、DMA和MMA解离成阴 离子,在色谱柱具有较强的保留能力。因此,图 1 中以碳酸氢铵为流动相,优化洗脱梯度,可使4 种砷化物在 10 min 内出峰, 各目标色谱峰的分离 度达到 5~7,分析时间也短于国家标准^[15]。

2.2 样品净化材料比较

样品中大分子蛋白和花色苷物质长期残留在 阴离子色谱柱上不仅影响目标物的峰形,也会降

特约专栏

低色谱柱的耐受性,缩短寿命。本实验采用石墨 碳粉、石墨碳黑柱和 C₁₈柱 3 种材料对样品提取

液进行净化。图 2(a)~(d)结果表明,未净化的紫米、 红米和糙米的提取液呈不同程度的黄色, 经石墨 碳粉、石墨碳黑柱和 C₁₈小柱净化后,提取液为 透明状态,表明3种净化材料均可去除样品中的 色素杂质。此外,本实验通过向样品中添加 0.1 mg/kg的4种形态砷,以添标回收率进一步考 察各种净化材料对目标化合物的吸附作用。回收 率结果如图 2(e)~(g)所示,尽管两种石墨碳黑材料 能充分去除样品中的色素,但对标准溶液和加标 样品中 4 种砷化物也具有强烈的吸附作用,吸附 率达 16%~41.2%。而 C18 对样品具有很好的净化 效果的同时,对标准溶液和加标样品中的4种砷 形态的吸附较弱,可获得 85.9%~103.7%的回收 率。该结果可能是由于石墨碳粉在吸附去除色素 的同时,对极性的砷化物也具有一定的吸附作用。 而C₁₈柱主要保留蛋白质和色素等大分子有机物, 小分子砷化物可顺利通过净化柱,达到高效净化 的目的。因此,为在提高净化效率的同时避免对 目标化合物的吸附损失,本实验选用 C₁₈ 柱作为 不同稻米基质的净化材料。

注: (a)~(d)依次为未净化、石墨碳粉、石墨碳黑柱和 C₁₈柱净化后的样品提取液; (e)~(f)依次为石墨碳粉、石墨炭黑柱和 C₁₈柱 净化后的加标回收率。

Note: (a)~(d) were extract of samples and purified by bond elut carbon bulk, bond elut carbon and bond elut C_{18} , (e)~(f) The result of spiked recovery in three rice matrices after purification of bond elut carbon bulk, bond elut carbon and bond elut C18. 图 2 三种材料的净化效果及吸附作用

Fig.2 The purification effect and adsorption of three materials

2.3 方法验证

2.3.1 方法的线性、检出限和定量限

用超纯水将4种砷形态配制成0、1、5、10、

20 和 50 μg/L 的混合标准工作液,在优化后的色 谱条件下测定分析。分别以 4 种砷形态的峰面积 (y)和对应浓度(x)进行线性回归分析,绘制

标准曲线。表 1 结果表明,4 种砷形态在 0 ~ 50 μg/L 浓度范围内与对应峰面积呈良好的线性 关系,相关系数(r)均大于0.999 1。采用空白 样品提取液配制标准溶液,以4 种砷形态的色谱 峰信噪比(S/N)3 倍和 10 倍对应的浓度分别为 检出限和定量限。结果表明,4 种砷形态的方法 检出限和定量限分别为 0.002 ~ 0.01 mg/kg 和 0.07 ~ 0.033 mg/kg。无机砷(As(III)和 As(V)之 和)的检出限和定量限与 GB/T 5009.11—2014 中 液相色谱-原子荧光光谱法测定稻米中无机砷的 检出限(0.02 mg/kg)和定量限(0.05 mg/kg)相当, 可完全满足、样品中各砷形态的含量测定要求。

表 1 4 种砷形态的线性范围、线性方程、相关系数、检出限和定量限 Table 1 Linear range, linear equations, correlation coefficients (r), LODs and LOQs of four arsenic species

	-	-			-
砷形态	线性范围/(μg/L)	线性方程	相关系数(r)	检出限/(mg/kg)	定量限/(mg/kg)
As(III)	0 ~ 50	<i>y</i> =1 043.165 1 <i>x</i> -500.222 5	0.999 1	0.01	0.033
As(V)	$0 \sim 50$	<i>y</i> =412.872 9 <i>x</i> -605.855 3	0.999 8	0.01	0.033
DMA	$0 \sim 50$	<i>y</i> =1 779.346 2 <i>x</i> -508.904 7	0.999 5	0.002	0.007
MMA	$0 \sim 50$	<i>y</i> =1 250.461 5 <i>x</i> -575.870 7	0.999 2	0.002	0.007

2.3.2 方法的准确度和精密度

Table 2

由于红米和紫米无市售的标准物质,本实验 分别采取添标回收率和标准物质测定两种方式考 察方法的准确度。实验向不同种类的稻米基质中 加入已知量的低、中和高水平的4种砷形态标准 溶液,经1.5提取和净化步骤后,采用 HPLC-AFS 分析,计算加标回收率。每个浓度水平测定 6次, 用于精密度计算。实验结果如表 2 所示,本方法 4 种砷形态在不同稻米基质的加标回收率为 75.2%~ 104%,精密度为 1.5%~8.3%。该结果表明,本实 验建立的 4 种砷形态测定方法具有较高的准确度 和精密度,可适用于实际样品种砷形态的分析。

表 2 4 种形态砷在各稻米基质中 3 个添标水平的回收率和精密度 Average recovery and precision of four argenic species in different rice matrix at three spiked levels

水稻 种类	砷形态	本底含量 /(mg/kg)	添标水平 /(mg/kg)	测定值 /(mg/kg)	回收率 /%	精密度 /%	水稻 种类	砷形态	本底含量 /(mg/kg)	添标水平 /(mg/kg)	测定值 /(mg/kg)	回收率 /%	精密度 /%
	As(III)	0.162	0.050	0.203	82.7	5.5	·红米	DMA	0.032	0.050	0.072	80.8	3.7
			0.100	0.252	90.1	6.1				0.100	0.136	104	2.8
			0.200	0.364	101	2.7				0.200	0.229	98.3	2.9
			0.050	0.106	80.2	8.3		MMA	未检出	0.050	0.038	76.0	5.3
	As(V)	0.066	0.100	0.144	78.2	4.6				0.100	0.075	75.2	2.9
此业			0.200	0.244	88.8	1.5				0.200	0.158	79.2	1.8
<i>茶</i> 小 ·		0.028	0.050	0.070	83.7	3.2	*** ·*	As(III)	0.022	0.050	0.063	81.0	6.9
	DMA		0.100	0.129	101	2.4				0.100	0.122	99.6	1.5
			0.200	0.217	94.7	5.2				0.200	0.214	96.2	5.2
	MMA	未检出	0.050	0.039	77.9	3.8		As(V)	0.028	0.050	0.067	77.7	4.1
			0.100	0.079	79.0	1.8				0.100	0.112	83.9	1.6
			0.200	0.205	81.9	3.5				0.200	0.202	86.9	2.6
红米,			0.050	0.194	80.5	6.2	他不			0.050	0.056	97.2	2.6
	As(III)	0.154	0.100	0.246	91.9	3.6		DMA MMA	0.007 未检出	0.100	0.113	106.4	1.9
			0.200	0.349	97.7	5.4				0.200	0.195	93.9	7.0
	As(V)	0.074	0.050	0.113	78.2	3.8				0.050	0.040	79.8	5.3
			0.100	0.161	87.2	4.7				0.100	0.080	79.6	6.9
			0.200	0.241	83.7	1.5				0.200	0.063	85.8	3.5

此外,按照本方法对无机砷含量高低不同的 两个大米粉标准参考物质 GBW(E) 100361 和 GBW(E)100349 平行测定 6 次,进一步验证该方法的准确度和精密度。表 3 结果表明,两个标准

物质的无机砷(As(Ⅲ)和As(V)之和)平均结果分 别为 0.090 和 0.182 mg/kg,在标准物质证书值允许 的参考范围内。两个标准物质中的 As(Ⅲ)、As(V) 和 DMA 重复测定结果的精密度均小于 9.87%。

Table 3The results of four arsenic species in the CRM-rice									
砷形态		GBW(E)100361	GBW(E)100349						
	证书值/(mg/kg)	测定值/(mg/kg)	精密度/%	证书值/(mg/kg)	测定值/(mg/kg)	精密度/%			
As(III)	/	0.057	8.8	/	0.116	8.8			
As(V)	/	0.033	9.4	/	0.066	9.9			
DMA	/	0.028	5.7	/	0.053	4.5			
MMA	/	ND^{b}	/	/	ND	/			
iAs ^a	0.089 ± 0.005	0.090	/	0.19 ± 0.03	0.182	/			

表 3 标准物质中的 4 种砷形态测定结果

注 a: iAs 为 As(III)和 As(V)之和

注 b: ND 表示未检出

Note a: iAs is calculated as the sum of iAs(III) and As(V).

Note b: ND represents not detected.

2.4 实际样品分析

采用本实验所建立的方法测定市场上随机购 买的 10 个样品中的砷形态。结果如表 4 所示, 10 个稻米样品中有 9 个样品检出 3 种砷类化合物, 含量为 0.051~0.193 mg/kg,均低于 GB2762—2017 《食品安全国家 标准食品中污染物限量》^[9]要 求(无机砷 < 0.2 mg/kg)。检出样品中的砷形态含 量大小依次为 As(III)> DMA > As(V) > MMA, 无 机砷主要以 As(III)为主,含量范围在 0.051~ 0.150 mg/kg,在无机砷中所占比例为 76%~100%, 与李鑫等^[5]的报道结果相一致。实际样品测定中 的质控样品、阴性样品和阳性样品的色谱图见图 3。

表 4	Ⅰ 稻米样品中四种砷形态测定结果
Table 4	The results of four arsenic species in real

rice samples								
稻米种类	样品编号	As(III)	As(V)	DMA	MMA	iAs ^a		
	1	0.150	0.043	0.053	ND^{b}	0.193		
紫米	2	0.051	ND	0.030	ND	0.051		
	3	0.084	0.024	0.036	ND	0.108		
	4	0.054	0.013	0.020	ND	0.066		
红米	5	0.074	0.014	0.020	ND	0.088		
	6	0.111	0.035	0.047	ND	0.146		
	7	0.054	ND	0.018	ND	0.054		
<u> </u>	8	0.126	0.021	0.029	ND	0.147		
他不	9	ND	ND	ND	ND	ND		
	10	0.097	0.007	0.047	ND	0.104		

注 a: iAs 为 As(III)和 As(V)之和

注 b: ND 表示未检出

Note a: iAs is calculated as the sum of iAs(III) and As(V). Note b: *ND* represents not detected.

图 3 标准物质、阴性样品和阳性样品中 4 种砷形态的色谱图 Fig.3 The chromatogram of four arsenic species in CRM-rice, negative and positive samples

3 结论

本研究通过优化流动相的种类和浓度,发现 以碳酸氢氨为流动相梯度洗脱4种砷形态,可获 得灵敏度高,基线分离,峰形好的色谱峰。综合 比较石墨碳和C₁₈柱对不同水稻基质的净化效果, 结果表明,C₁₈柱既能充分去除样品中的色素和大 分子杂质,也能降低4种砷形态的吸附损失率。 进一步采用加标回收和标准物质测定等实验考察 该方法的有效性,结果发现在线性范围内 4 种砷 形态具有良好的相关性,加标回收率在 75.2%~ 104%,标准物质测定结果均在标准物质证书值允 许的参考范围内。尽管本实验建立的方法检出限 和定量限与 GB 5009.11—2014标准中的无机砷检 出限和定量限相当,但该方法具有更优的分离度 和净化效果,可提高检测结果的准确度和仪器耐 受性。

参考文献:

- MAWIA A M, HUI S Z, ZHOU L, et al. Inorganic arsenic toxicity and alleviation strategies in rice[J]. Journal of Hazardous Materials, 2021, 408, 124751.
- [2] ZHAO F J, TANG Z, SONG J J, et al. Toxic metals and metalloids: Uptake, transport, detoxification, phytoremediation, and crop improvement for safer food[J]. Molecular Plant, 2022, 15, 27-44.
- [3] LOOMIS D, GUHA N, HALL A L, et al. Identifying occupational carcinogens: an update from the IARC Monographs[J]. Occupatioal Environmental Medicine, 2018, 75(8): 593-603.
- [4] 张丽梅,杨天,吴紫旋,等. 稻米中 5 种砷形态提取及 HPLC-ICP-MS 法测定[J]. 实验科学与技术, 2021, 19(4): 24-29.
 ZHANG L M, YANG T, WU Z X, et al. Extraction and HPLC-ICP-MS determination of five arsenic species in rice[J]. Experiment Science and Technology, 2021, 19(4): 24-29.
- [5] RAHMAN H, CAREY M, HOSSAIN M, et al. Modifying the parboiling of rice to remove inorganic arsenic, while fortifying with calcium[J]. Environmental Science Technology, 2019, 53(9): 5249-5255.
- [6] 李喜艳. 砷膳食暴露评估模型构建与应用研究[D]. 南京: 东 南大学, 2015.
 LI X Y. Establishment and application of models for long term dietary exposure for arsenic[D]. Nanjing, Southeast University, 2015.
- [7] 国家市场监督管理总局. 食品安全国家标准 食品中污染物限量: GB/T 2762—2022[S]. 北京:中国标准出版社, 2022.
 State Administration for Market Regulation. National standard for food safety, limits of contaminants in food: GB/T 2762—2022[S]. Beijing: Standards Press of China, 2022.
- [8] 庞淑婷, 刘颖. 中外谷物及其制品中污染物限量要求分析[J]. 标准科学, 2021, 3, 70-76.
 PANG S T, LIU Y. Analysis of maximum level of contaminants in cereals and their products at home and abroad[J]. Standard Science, 2021, 3, 70-76.
- [9] 李鑫, 刘丽菁, 林坚, 等. 液相色谱-原子荧光光谱法测定稻 米中的砷形态[J]. 海峡预防医学杂志, 2021, 27(3): 4-6.
 LI X, LIU L J, LIN J, et al. Detection of arsenic species in rice

by high performance liquid chromatography-atomic fluorescence spectrometry method[J]. Strait Journal of Preventive Medicien, 2021, 27(3): 4-6.

- [10] 曹峰. 微波萃取-液相色谱-原子荧光光谱法测定紫米中的无机砷[J]. 粮食与油脂, 2021, 34 (12): 150-157.
 CAO F. Determination of inorganic arsenic in purple rice by microwave extraction LC-AFS[J]. Cereals and Oils, 2021, 34 (12): 150-157.
- [11] AMARAL C D, NOBREGA J A, NOGUEIRA A R. Sample preparation for arsenic speciation in terrestrial plants-a review[J]. Talanta, 2013, 115, 291-9.
- [12] LARIOS R, FERNANDEZ-MARTINE R, LEHECHO I, et al. A methodological approach to evaluate arsenic speciation and bioaccumulation in different plant species from two highly polluted mining areas[J]. Science of The Total Environment, 2012, 414, 600-7.
- [13] MA L, YANG Z, TANG J, et al. Simultaneous separation and determination of six arsenic species in rice by anion-exchange chromatography with inductively coupled plasma mass spectrometry[J]. Journal of Separation Science, 2016, 39(11): 2105-13.
- [14] DA ROSA F C, NUNES M A G, DUARTE F A, et al. Arsenic speciation analysis in rice milk using LC-ICP-MS[J]. Food Chemistry X2, 2019, 2, 100028.
- [15] 国家卫生和计划生育委员会. 食品安全国家标准 食品中总 砷及无机砷的测定: GB/T 5009.11—2014[S]. 北京: 中国标准 出版社, 2014.
 National Health and Family Planning Commission of the People's Republic of China. National standard for food safety, determination of total arsenic and inorganic arsenic in food: GB/T 5009.11—2014[S]. Beijing: Standards Press of China,
- [16] HERATH I, KUMARATHILAKA P, BUNDSCHUH J, et al. A fast analytical protocol for simultaneous speciation of arsenic by Ultra-High Performance Liquid Chromatography (UHPLC) hyphenated to Inductively Coupled Plasma Mass Spectrometry (ICP-MS) as a modern advancement in liquid chromatography approaches[J]. Talanta, 2020, 208, 120457.

2014.

- [17] CHEN Z L, AKTER K F, RAHMAN M M, et al. The separation of arsenic species in soils and plant tissues by anion-exchange chromatography with inductively coupled mass spectrometry using various mobile phases[J]. Microchemical Journal, 2008, 89(1): 20-28.
- [18] HOU H, CUI W, XU Q, et al. Arsenic Species Analysis at Trace Level by High Performance Liquid Chromatography with Inductively Coupled Plasma Mass Spectrometry[J], International Journal of Analytical Chemistry, 2019, 3280840.
- **备注:**本文的彩色图表可从本刊官网(http://lyspkj.ijournal.cn)、中国知网、万方、维普、超星等数据库下载获取。