

陈海华教授主持"淀粉改性和品质改善"特约专栏文章之五

DOI: 10.16210/j.cnki.1007-7561.2022.05.010

刘文会,陈海华,王雨生. 海藻酸钠和刺槐豆胶对小麦淀粉流变学及质构性质的影响[J]. 粮油食品科技,2022,30(5):149-157. LIU W H, CHEN H H, WANG Y S. Effects of sodium alginate and locust bean gum on rheological and texture properties of wheat starch[J]. Science and Technology of Cereals, Oils and Foods, 2022, 30(5): 149-157.

海藻酸钠和刺槐豆胶对小麦淀粉 流变学及质构性质的影响

刘丈会1,陈海华1,2⊠,王雨生1

(1. 青岛农业大学 食品科学与工程学院,山东 青岛 266109;2. 青岛农业大学 巴瑟斯未来农业科技学院,山东 青岛 266109)

摘 要:为进一步改善小麦淀粉凝胶性质,通过动态流变学、静态流变学、光学微流变等方法探 讨海藻酸钠(AG)和刺槐豆胶(LBG)两种亲水胶体的复配比对小麦淀粉黏弹性和凝胶质构的影 响。结果表明,添加不同配比的 AG 和 LBG 均能提高小麦淀粉凝胶的储能模量、损耗模量和稠度 系数,降低损耗因子,AG 与 LBG 复配物具有良好的增稠效果。小麦淀粉-亲水胶体复配体系的黏 度随剪切速率升高而降低,表现出剪切变稀的假塑性行为,符合幂定律模型。光学微流变结果证 实,AG 和 LBG 的加入提高了小麦淀粉凝胶的弹性指数和黏性指数,降低固液平衡指数。当 AG 与 LBG 质量比为 1:1 时,AG 和 LBG 之间存在协同作用,小麦淀粉凝胶更为致密、弹性更强, 表现出最优的黏弹性。

关键词:小麦淀粉;海藻酸钠;刺槐豆胶;协同作用;流变学特性

中图分类号: TS201.4 文献标识码: A 文章编号: 1007-7561(2022)05-0149-09

网络首发时间: 2022-09-01 13:31:03

网络首发地址: https://kns.cnki.net/kcms/detail/11.3863.TS.20220901.1055.003.html

Effects of Sodium Alginate and Locust Bean Gum on Rheological and Texture Properties of Wheat Starch

LIU Wen-hui¹, CHEN Hai-hua^{1,2}, WANG Yu-sheng¹

(1. College of Food Science and Engineering, Qingdao Agricultural University, Qingdao, Shandong 266109, China;

2. Barthurst Future Agri-Tech Institute of Qingdao Agricultural University, Qingdao, Shandong 266109, China)

Abstract: To further improve the gel properties of wheat starch, the effects of sodium alginate (AG) to locust bean gum (LBG) ratio on the viscoelasticity and gel texture of wheat starch were investigated by

作者简介: 刘文会, 女, 1996年出生, 硕士, 研究方向为食品化学。E-mail: wen186786jiang@163.com.

收稿日期: 2022-06-26

基金项目:日照市创新领军人才(团队)(日政字[2021]64号);山东省自然科学基金项目(ZR2016CM17);青岛农业大学研究生创 新立项(QNYCX20029)

Supported by: Innovation Leader Talent (team) of Rizhao City (No. 2021-64); Natural Science Foundation of Shandong Province (No. ZR2016CM17); Qingdao Agricultural University Postgraduate Creative Education Program (No. QNYCX20029)

通讯作者: 陈海华, 女, 1973年出生, 博士, 教授, 研究方向为食品化学。E-mail: haihchen@163.com.

dynamic rheology, steady rheology and diffusing wave spectroscopy. The results showed that storage modulus, loss modulus and consistency coefficient of wheat starch gel were increased, while loss factor was decreased with the addition of AG and LBG with different ratio. The viscosity of wheat starch-gum blends decreased with the increase of shear rate, showing pseudoplastic behavior of shear thinning. This was in line with the power law model. The results of diffusing wave spectroscopy confirmed that elastic index and viscosity index of wheat starch gel were increased, while solid-liquid index was decreased with the addition of AG and LBG. When the mass ratio of AG to LBG was 1 : 1, there was a synergistic effect between AG and LBG that could cause wheat starch forming dense and elastic gels with optimal viscoelasticity. **Key words:** wheat starch; sodium alginate; locust bean gum; synergistic effect; rheological properties

小麦淀粉是一种来源丰富、价格低廉的碳水 化合物资源,在食品工业中常用作黏合剂、增稠 剂、成膜剂^[1]。然而,小麦淀粉凝胶黏弹性差、 口感发黏、不耐储藏,在很大程度上影响面制食 品的加工性能和最终产品的质量,是制约小麦淀 粉食品加工业的瓶颈问题^[2]。添加亲水胶体可以 改善淀粉凝胶质构,是食品工业中改善食品品质 最常用的方法之一^[3]。亲水胶体通常具有绿色、 安全、可再生等优点,已被广泛应用于淀粉类食 品生产中。海藻酸钠(AG)是一种阴离子亲水胶 体,具有良好的增稠性、稳定性和凝胶性^[4]。Kim 等^[5]研究表明AG能够提高豌豆淀粉-海藻酸钠复 合体系的黏度和动态流变特性。Fang 等^[6]发现 AG 能够增强蜡质马铃薯淀粉凝胶强度。与 AG 不同, 刺槐豆胶(LBG) 是一种中性半乳甘露聚 糖,也常应用于淀粉质食品,改善产品的凝胶性 质。Hussain 等^[7]和 Yoo 等^[8]发现 LBG 可以提高 抗性玉米淀粉和大米淀粉的凝胶网络结构。另外, LBG 还可与卡拉胶、黄原胶等亲水胶体产生协同 作用,形成更高弹性和强度的凝胶结构^[9]。

单一亲水胶体对淀粉的流变学、糊化和质构 等性质的影响已经有了大量研究。Lee 等^[10]研究 发现塔拉胶能够提高大米淀粉凝胶的黏度和黏弹 性。Pourfarzad 等^[1]发现鼠尾草胶可提高小麦淀粉 凝胶的弹性模量和黏性模量,改善小麦淀粉凝胶 的流变学性能。Zhang 等^[11]报道黄原胶可以改善 葛根淀粉的糊化特性和流变特性。然而,单一亲 水胶体的黏度较低,只能在一定程度上提高淀粉 的凝胶强度。实际生产中,人们通常添加不同种 类的亲水胶体,通过亲水胶体之间的协同作用进 一步改善淀粉凝胶的口感和质地。例如,米粉加 工中常添加果胶、鱼皮明胶和 AG 增强米粉的光 滑程度和弹性;果冻生产中常添加卡拉胶、魔芋 胶和柠檬酸等来改善果冻的质地和口感。

然而,淀粉体系中添加的几种亲水胶体之间 如何发生相互作用以提高淀粉凝胶性质,目前还 未见较系统的研究;而明确几种亲水胶体与淀粉 间的相互作用机制,有利于进一步拓展亲水胶体 在食品工业中的应用。笔者前期研究发现,AG 和LBG之间存在着协同作用,能与绿豆支链淀粉 侧链通过氢键相互作用,抑制淀粉的重结晶,进 而延缓绿豆淀粉老化。但AG和LBG之间的协同 作用对小麦淀粉的糊化特性和流变特性的影响尚 没有深入研究。因此,本文采用动态流变学、静 态流变学、光学微流变等方法,评价不同比例的 AG-LBG 复配物对小麦淀粉黏弹性和凝胶质构的 影响,以期为 AG和LBG 在淀粉类食品中的应用 提供理论参考。

1 材料和方法

1.1 材料与仪器

小麦淀粉(WS,直链淀粉含量为 29.9%): 江苏南京甘之源有限公司;海藻酸钠(AG):青 岛明月海藻有限公司;刺槐豆胶(LBG):北京 Solarbol 科技有限公司。

1.2 仪器与设备

MCR302型动态流变仪:奥地利安东帕公司; Rhrolaser Master 光学流变仪:法国 Formulaction 公司; RVA Starchmaster 快速黏度分析仪:澳大 利亚 New-port 公司; TA-XT·Plus 物性测定仪: 英国 Stable Micro Systems 公司。

1.3 实验方法

1.3.1 样品制备

首先,制备2%(w/w,基于淀粉干基质量) 的 AG、LBG、AG 与 LBG 不同比例组合(AG 与 LBG 比例如表 1 所示)溶液。其次,将小麦淀 粉分散于上述溶液中,制备质量分数为10%的小 麦淀粉-亲水胶体悬浮液, 沸水浴加热 15 min, 连续搅拌至淀粉糊化,所得样品分别记为WS-A2、 WS-A_{1.5} $L_{0.5}$ WS-A₁ L_1 WS-A_{0.5} $L_{1.5}$ WS-L₂. WS-A_nL_m(n=0~2, m=0~2)为添加不同比例 AG 与 LBG 的小麦淀粉-亲水胶体复配物。

上述样品迅速冷却至室温,用于动态流变学 性质测试。

取 4 mL 上述样品,迅速加入微流变样品瓶 中(直径 14.7 mm),用于光学微流变学性质的 测试。

上述样品置于高度 4 cm、直径 3.5 cm 的圆柱 形容器中,迅速冷却至室温,并于(4±1)℃下放 置1d,用于凝胶硬度的测定。

制备质量分数为 5%的小麦淀粉--亲水胶体悬 浮液,按照上述方法糊化后,迅速冷却至室温, 用于静态流变学性质和时间扫描测试。

制备质量分数为 10.7% (w/w) 的小麦淀粉-亲水胶体悬浮液,用于 RVA 糊化特性的测定。

Table 1 Co	ompositions and abbrevi	ations of all samples			
样品名称	AG 浓度(%, w/w 淀粉干基质量)	LBG 浓度(%, w/w 淀粉干基质量)			
WS	0	0			
WS-A ₂	2	0			
WS-A _{1.5} L _{0.5}	1.5	0.5			
$WS-A_1L_1$	1.0	1.0			
$WS-A_{0.5}L_{1.5}$	0.5	1.5			
WS-L ₂	0	2			

表1 样品组成和样品名称缩写

1.3.2 动态流变学特性测定

用流变仪测定样品的动态流变学特性,称取 3 g 淀粉凝胶样品,置于流变仪样品台,用塑料 刮刀刮去多余样品,在样品周围覆盖一层硅油, 防止水分蒸发。测量夹具为直径 25 mm 的平行 板,间隙1mm,测试温度25 ℃,分别进行线性 黏弹区扫描、频率扫描和时间扫描。

(1)频率扫描

根据线性黏弹区范围,确定应变 0.5%,设定 频率范围 0.1~10 Hz, 记录频率扫描过程中, 样品 贮能模量(G')、损耗模量(G")和损耗因子(tanδ) 随频率变化的流变学图谱。

(2) 时间扫描

根据线性黏弹区范围,确定应变 0.5%, 频率 1 Hz, 测试温度 4 ℃, 扫描时间 2 h, 记录 tanδ 随时间变化的流变学图谱。

1.3.3 稳态剪切特性测定

根据 Sun 等^[12]的实验方法,取3g 左右冷却 至室温的小麦淀粉糊,置于流变仪样品台,用塑 料刮刀刮去多余样品,在样品周围覆盖一层硅油, 防止水分蒸发。测量夹具为直径 25 mm 的平行 板,间隙 1 mm,测试温度 25 ℃,分别在 0.1~ 300 s⁻¹ 和 300~0.1 s⁻¹ 的剪切速率范围内进行测 试,记录样品剪切应力(σ)随剪切速率(γ)变 化的流变学图谱。σ与γ的关系用幂定律方程(方 程1) 拟合, 计算稠度系数(K) 和流动特征指数 (n)。触变环面积为上行曲线和下行曲线所围成 的面积。

 $\sigma = K \cdot \gamma^n$

(1)

1.3.4 微流变学特性测定

用光学微流变仪测试样品的微流变学特性, 测试温度 25 ℃,记录粒子均方根位移(MSD) 与去相关时间的曲线,用仪器自带的 RheoSoft Master1.4.0.0 软件计算微流变学特性参数,包括 弹性指数(EI)、宏观黏度指数(MVI)和固液平 衡指数 (SLB)。

1.3.5 糊化特性测定

参照 Li 等^[13]方法略做修改,将小麦淀粉-亲 水胶体悬浮液转移至铝罐中,用 RVA 快速黏度仪 测定样品的糊化特性,记录加热过程中的样品黏 度随加热温度变化的曲线,计算峰值黏度(PV)、 末值黏度(FV)、衰减值(BD)、回生值(SB) 等参数。

1.3.6 硬度测定

测量前,将4℃储藏的样品取出,并平衡至

特约专栏(二)

室温,使用质构分析仪测定样品的硬度,采用一次压缩法,P/0.5 圆柱形探头(直径 1.27 cm),测试速度 1.0 mm/s,压缩高度 10 mm,记录压缩过程中力随压缩高度变化的关系图,压缩过程中的最大力记为凝胶硬度。

1.4 数据分析

所有实验均重复 3 次。利用 Microsoft Office Excel 2010 软件作图, SPSS 17.0 对数据进行显著 性分析, *P*<0.05, 差异显著。

2 结果与讨论

2.1 动态流变学性质分析

如图 1 所示,所有样品的 G'和 G"随振荡频 率的增加呈升高趋势;测试频率范围内,所有样 品的 G'始终高于 G",tanδ 值远小于 1,表明小麦 淀粉及小麦淀粉-亲水胶体复合体系凝胶均呈现

黏弹性的类固体特征^[1,14]。这与 Zhang 等^[15]和 Sun 等[12]研究小麦淀粉和豌豆淀粉动态流变学结果 一致。加入 AG 和 LBG 后,样品的 G'和 G"明显 增加, tanδ 降低, 表明添加亲水胶体可以增强淀 粉凝胶的刚性和弹性。相同频率下, WS-A₁L₁的 G'和 G"值最高, tanδ 值最低, 振荡频率为 10 Hz 时,对应的 G'、G"和 tanδ 值分别为 2 599 Pa、203 Pa 和 0.076。Pourfarzad 等^[1]报道鼠尾草胶的加入提 高了小麦淀粉的 G'和 G"值,降低了小麦淀粉凝 胶的 tanδ 值。Hussain 等^[7]发现与对照样品相比, 添加 LBG 的抗性玉米淀粉表现出更高的 G'和 G" 值。Yadav 等^[16]证实添加瓜尔胶和黄原胶提高了芋 头淀粉的 G'和 G"值。Zheng 等^[17]表明添加黄原 胶降低了葛根淀粉凝胶的 tanδ 值。这可能是冷却 过程中,直链淀粉和亲水胶体通过氢键结合,增 加了缠结点的数量,形成更稳定的三维网络^[16,12]。

相同振荡频率下, WS-A₂ 的 G'和 G"均高于 WS-L₂, 频率为 10 Hz 时, G'和 G"分别升高了约 122 Pa 和 11 Pa, 表明 WS-AG 样品的凝胶网络比 WS-LBG 更致密。这与 Lin 等^[18]的结果一致, 他 们发现绿豆抗性淀粉–黄原胶复合凝胶的弹性比 绿豆抗性淀粉–魔芋胶复合凝胶更强。Fang 等^[6] 发现添加糯马铃薯淀粉–黄原胶凝胶的 G'高于添 加糯马铃薯淀粉–瓜尔胶凝胶。与 WS-A₂和 WS-L₂ 相比, WS-A_nL_m表现出更高的 G'和 G"以及更低 的 tanδ。由上述结果可以看出, AG 对 WS 凝胶 黏弹性的改善能力优于 LBG, AG 和 LBG 之间存 在协同作用,能明显提高小麦淀粉凝胶的黏弹性。

如图 2 所示,随着扫描时间延长,所有样品 的 tanδ 均降低,表明随冷却时间的延长,小麦淀 粉-亲水胶体复合体系的凝胶网络结构更致密。这

图 2 小麦淀粉-亲水胶体复合体系的时间扫描图 Fig. 2 Time sweep rheograms of WS and WS-gum blends

与 Yu 等^[19]和 Li 等^[13]的研究结果一致。这可能是 冷却过程中,直链淀粉通过氢键作用形成了双螺 旋结构,然后聚集形成有弹性的淀粉凝胶^[3]。添 加亲水胶体使样品的 tanδ 显著提高,表明亲水胶 体阻碍了直链淀粉分子链的聚集。Zhang 等^[20]表

明添加大米蛋白水解物后小麦淀粉的 tanδ高于对 照。Shahzad 等^[21]指出黄原胶的加入使甘薯淀粉 表现出更高的 tanδ。这可能是亲水胶体和直链淀 粉分子之间的相互作用阻碍了直链淀粉渗漏,从 而干扰凝胶网络的形成^[13]。WS-A₂ 的 tanδ 高于 WS-L₂,所有样品中,WS-A₁L₁ 的 tanδ 值最高, 比WS高出约90%,表明 AG与LBG复配比例1: 1 时具有协同作用,能干扰小麦淀粉凝胶网络结 构的形成,表现出柔软的凝胶质地。

2.2 静态流变学性质

如图 3 所示,上行曲线阶段,所有样品的剪 切应力随着剪切速率的增加而增加,表现出典型 的假塑性,即剪切稀化的流动特征^[18]。这与 Pourfarzad 等^[1]和 Lin 等^[18]研究小麦淀粉糊和抗 性绿豆淀粉糊的稳态流变学结果一致。加入亲水 胶体后,样品的剪切应力明显增加。与 WS-A₂ 和 WS-L₂ 相比,WS-A_nL_m 表现出更高的剪切应 力。相同剪切速率下,WS-A₁L₁的剪切应力最高, 剪切速率为 300 s⁻¹时,对应的剪切应力为 43.2 Pa。 这与 Cai 等^[22]和 Sun 等^[12]研究趋势一致,他们发 现添加黄原胶或魔芋胶能显著提高马铃薯淀粉糊 和大米淀粉糊的剪切应力。这可能是亲水胶体与 渗漏直链淀粉或支链淀粉之间通过氢键发生交 联,使复合体系网络结构增强,具有更强的耐剪 切能力^[12]。

为进一步描述复合体系的流动特性,用幂定 律方程拟合稳态剪切的实验数据,计算得到相应 的流变学参数,包括稠度系数(K)、流动特征指 数(n)和相关系数(R²)。如表2所示,所有样 品的相关系数(R²)均处于 R²=0.90~0.99 之间, 表明幂定律方程可用于稳态剪切曲线的拟合。流 动特征指数n反映了与牛顿流体的相近程度,n=1 表示样品属于牛顿流体,n<1 表示样品属于假塑 性流体。流体指数n越小,其假塑性越强^[7]。所有 样品的n值均低于1,表现为典型的假塑性^[18,23]。 这可能是低剪切速率时,聚合物分子链缠结的破 坏与形成之间存在动态平衡;但高剪切速率时, 聚合物分子链缠结的破坏与形成的动态平衡被打

	表	2 小麦淀	В粉–亲水胶体≦	复合体系的	幂定律参数	Į
Table	2	Steady flo	ow parameters	of WS and	WS-gums	blends

样品名称	上行曲线			下行曲线			触变环面积/
	$K_1/(Pa \cdot s^n)$	n_1	\mathbb{R}^2	$K_2/(Pa \cdot s^n)$	n ₂	\mathbb{R}^2	$(\operatorname{Pa} \cdot \operatorname{s}^{-1})$
WS	1.00	0.63	0.99	0.28	0.82	0.99	844.15
WS-A ₂	1.15	0.58	0.95	0.51	0.75	0.96	518.31
$WS-A_{1.5}L_{0.5}$	2.51	0.47	0.90	1.07	0.57	0.99	109.13
$WS-A_1L_1$	2.55	0.42	0.91	2.43	0.50	0.99	108.60
$WS-A_{0.5}L_{1.5}$	2.47	0.51	0.90	1.62	0.63	0.98	109.91
WS-L ₂	2.36	0.49	0.99	0.93	0.69	0.96	649.62

注: K₁、n₁为上行曲线对应的稠度系数和流动特征指数; K₂、n₂为下行曲线对应的稠度系数和流动特征指数; R²为相关系数。 Note: K₁ and n₁ were the consistency coefficient and flow behavior index corresponding to the upward curve; K₂ and n₂ were the consistency coefficient and flow behavior index corresponding to the downward curve; R² was the correlation coefficient. 破,以前者(即分子链缠结的破坏)为主,其作 用超过了新缠结的形成,导致分子间流动阻力减 小,表观黏度降低^[10]。加入亲水胶体后,样品的 n₁降低了 0.05~0.21,表明添加亲水胶体可以增强 淀粉糊的假塑性。与 WS-A₂ 和 WS-L₂ 相比, WS-A_nL_m表现出更低的 n₁ 值。WS-A₁L₁ 的 n₁ 值 最低,为 0.42。这与 Hussain 等^[7]和 Liu 等^[24]报 道的添加阿拉伯胶和黄原胶降低木薯淀粉糊或马 铃薯糊的 n 值的趋势一致。

K 值是样品黏稠度的指标,K 值越大,表明 样品越黏稠。如表2所示,加入AG和LBG后, 样品的K₁明显增加,表明添加亲水胶体可以提高 小麦淀粉糊的黏稠度。与WS-A₂和WS-L₂相比, WS-A_nL_m的K₁值更高。WS-A₁L₁的K₁值最高为 2.55 Pa·sⁿ。Zheng等^[17]等报道添加黄原胶提高了 葛根淀粉糊的K值。Sun等^[12]发现与对照样品相 比,添加魔芋胶的大米淀粉糊表现出更高的K值。

如图 3 所示,下行曲线阶段,所有样品的剪 切应力均随着剪切速率的降低而减小。所有样品 的上行曲线始终位于下行曲线的上方, 上行曲线 和下行曲线不能完全重叠,形成一个闭合的触变 环,表明撤去剪切速率后,样品不能迅速恢复到 初始状态[12]。触变环面积反映样品触变性和抗剪 切能力的强弱。触变环面积越小,触变性越弱, 抗剪切能力越强,结构恢复能力也越强^[3]。如表2 所示,添加亲水胶体使小麦淀粉糊的触变环面积 从 844.15 Pa·s⁻¹ 显著降低到 108.60 Pa·s⁻¹,表明 添加亲水胶体减弱了小麦淀粉糊的触变性^[12]。与 WS-A2和WS-L2相比,WS-AnLm触变环面积明显 变小。WS-A1L1的触变面积最低,为108.60 Pa·s⁻¹, 表明 AG 和 LBG 之间存在协同作用,能使高剪切 速率破坏的网络结构又重新形成,弱化了淀粉糊 的触变性,增强了淀粉糊抗剪切能力。Sun 等^[12] 和Lee 等^[10]报道添加魔芋胶和黄原胶降低了马铃 薯淀粉糊和葛根淀粉糊的触变环面积。这可能是 亲水胶体与渗漏直链淀粉分子、支链淀粉分子之 间相互作用或缠结,强化了样品的结构^[17]。

2.3 微流变学性质分析

光学微流变技术通过跟踪粒子的布朗运动来 计算粒子的均方根位移(MSD),能在无损条件

下表征样品的黏弹特性^[25-26]。对于纯黏性流体, 粒子可以自由运动, MSD 曲线呈现线性。相反, 对于黏弹性样品,液滴之间相互作用形成"笼" 状网络结构, 粒子受到"笼"的限制不能自由移 动, MSD 曲线呈非线性^[26]。图 4 显示了小麦淀 粉-亲水胶体复配物的均方根位移与去相关时间 关系曲线。由图 4 可以看出,所有样品的 MSD 曲线呈非线性,可以分为三个区域:斜率区 I (0.001~0.01 s)、平台区(0.01~10 s)、斜率区 II (10~100 s)。在斜率区 I(0.001~0.01 s), 淀粉糊 MSD 曲线近似直线状, 淀粉粒子的 MSD 随去相 关时间呈线性增加,说明初始阶段淀粉糊尚未形 成网络结构。随着时间延长(0.01~10 s), MSD 曲线出现平台区,单位去相关时间内淀粉粒子的 运动范围逐渐缩小,表明淀粉链相互作用逐渐形 成凝胶网络结构,限制了淀粉粒子的运动。平台 区的高度(即 MSD 值)可以反映样品的弹性指 数(EI), 表征样品网络结构的致密程度。平台区 的斜率反映样品类固体或类液体的特征,用固液 平衡指数(SLB)表征^[27]。0.5<SLB<1时,黏性 行为占主导; 0<SLB<0.5 时, 弹性行为占主导。

平台区之后,在较长去相关时间(10~100 s), MSD 再次出现斜率区 II,斜率区 II 的斜率明显高 于斜率区 I,表明淀粉粒子能够摆脱凝胶网络束 缚,出现粒子迁移现象。斜率区 II 的斜率,反映 样品的宏观黏度(MVI),斜率越大,粒子运动的 平均速度越大,样品的宏观黏度越小。添加亲水 胶体后,平台区的高度 MSD 值显著降低,

特约专栏(二)

WS-A₁L₁ 表现出最低的 MSD 值,复合体系的弹 性增强^[28]。添加亲水胶体后,斜率区 II 的斜率降 低,粒子运动的平均速度减小,表明小麦淀粉-亲水胶体复合体系的宏观黏度更高。

如表 3 所示,加入亲水胶体后,复合体系的 EI 和 MVI 值均升高,WS-A₂表现出比WS-L₂更 高的 EI 和 MVI 值。与WS-A₂和WS-L₂相比, WS-A_nL_m表现出更高的 EI 和 MVI 值。WS-A₁L₁ 的 EI 和 MVI 值最高分别为 15.5×10⁻³ nm⁻² 和 0.41 nm⁻²·s。相反,加入亲水胶体后,复合体系 的 SLB 值由 0.53 降低到 0.39。Xu 等^[29]研究表明 添加微晶纤维素能提高姜黄素乳液凝胶的 EI 和 MVI 值。He 等^[27]发现添加抗性玉米淀粉和蔗糖 能提高酪蛋白凝胶的 MVI 值,降低 SLB 值。这 可能是小麦淀粉和亲水胶体之间通过氢键或离子 键发生相互作用,增强了粒子运动的阻力,粒子 需要更长的时间才能摆脱凝胶网络束缚,表现出 更高的 EI 和 MVI 值^[26]。

表 3 小麦淀粉-亲水胶体复合体系的微流变学特性参数 Table 3 Micro-rheological parameters of WS and WS-gum blends

样品名称	弹性指数 /(10 ⁻³ nm ⁻²)	固液平衡指数	宏观黏度指数 /(nm ⁻² ·s)			
WS	2.30±0.01e	$0.53{\pm}0.01^{a}$	0.04±0.01 ^e			
WS-A ₂	6.70±0.01°	$0.43 \pm 0.02^{\circ}$	$0.19{\pm}0.02^{\circ}$			
WS-A _{1.5} -L _{0.5}	$14.8{\pm}0.02^{a}$	$0.40{\pm}0.01^{d}$	$0.40{\pm}0.02^{a}$			
$WS-A_1-L_1$	15.5 ± 0.01^{a}	$0.39{\pm}0.01^{d}$	$0.41{\pm}0.00^{a}$			
WS-A _{0.5} -L _{1.5}	$10.4{\pm}0.01^{b}$	$0.41{\pm}0.02^{d}$	$0.31{\pm}0.02^{b}$			
WS-L ₂	$3.60{\pm}0.01^{d}$	$0.47{\pm}0.01^{b}$	$0.09{\pm}0.01^{d}$			
注:同一列数据中不同小写字母表示数据间存在显著差异						

 $(P < 0.05)_{0}$

Note: Different lower case letters in the same column indicated the mean values were significantly different (P < 0.05).

2.4 RVA 性质分析

如表 4 所示,加入亲水胶体后,样品的峰值 黏度(PV)和末值黏度(FV)明显增加,分别 提高了 1 060~1 394 cP 和 581~1 456 cP。WS-A₂ 的 PV 和 FV 值均高于 WS-L₂。与 WS-A₂ 和 WS-L₂ 相比,WS-A_nL_m表现出更高的 PV 值。所有样品 中,WS-A₁L₁具有很高的 FV 值,为 6 449 cP。 这与 Zhang 等^[11]和 da Silva Costa 等^[30]报道的添 加瓜尔胶和黄原胶提高了玉米淀粉和木薯淀粉黏 度的趋势一致。Zhang 等^[15]报道改性淀粉和田菁 胶比例为1:4时的小麦淀粉--胶体复配物体系具 有最高的黏度。这可能是糊化过程中,亲水胶体 溶于水形成黏稠的溶液,同时直链淀粉渗漏,使 复合体系黏度增加^[31]。另一个原因可能是亲水胶 体与渗漏直链淀粉或支链淀粉之间通过氢键相互 作用,相互缠结或交联,使复合体系黏度增大^[11]。

表 4 小麦淀粉-亲水胶体复合体系的糊化参数 Table 4 Pasting parameters of WS and WS-gum blends

样品名称	PV/cP	FV/cP	BD/cP	SB/cP		
WS	4 092±13 ^d	5 210±6 ^e	1 615±8 ^e	1733 ± 1^{f}		
WS-A ₂	$5\ 298{\pm}4^{b}$	6 666±5ª	$1~659\pm2^{d}$	3 026±3ª		
$WS\text{-}A_{1.5}L_{0.5}$	5 479±8ª	$6\ 432{\pm}16^{b}$	1 892±1 ^b	2 845±7°		
$WS-A_1L_1$	5 486±8 ^a	$6~449 \pm 7^{b}$	1 942±11 ^a	$2 901 \pm 11^{b}$		
WS-A _{0.5} L _{1.5}	5 313±6 ^b	6 042±11°	1 841±11°	2570 ± 16^{d}		
WS-L ₂	5 152±5°	5 791±3 ^d	$1~458{\pm}7^{\rm f}$	2 098±1°		
这一回一到粉担由了回上写它回去二粉担闷去去回 <u>紫光</u> 日						

注:同一列数据中不同小写字母表示数据间存在显著差异(P<0.05)。

Note: Different lower case letters in the same column indicated the mean values were significantly different (P < 0.05).

衰减值(BD)表征持续加热过程和剪切力作 用下膨胀的淀粉颗粒抗剪切稀化能力的强弱^[31]。 回生值(SB)代表冷却时淀粉链重结晶的程度。 添加亲水胶体可提高小麦淀粉的 BD 值和 SB 值 分别达 327 cP 和 1 293 cP, WS-A1L1 表现出最高 的 BD 值。Liu 等^[31]也发现添加木瓜籽胶显著提 高了虎杖淀粉的 BD 值。Zhang 等^[11]证实添加瓜 尔胶和黄原胶,小麦淀粉的 BD 值和 SB 值呈上 升趋势。Lin 等^[18]报道添加黄原胶和魔芋胶显著 提高了抗性绿豆淀粉的 BD 值和 SB 值。这可能 是小麦淀粉-亲水胶体复合体系黏度增加,使得施 加在膨胀淀粉颗粒上的剪切力远大于淀粉-水悬 浮液中的剪切力,导致复合体系的 BD 值更高^[31]。 SB 值增加的原因可能是亲水胶体与淀粉之间具 有不相容性,导致渗漏直链淀粉的有效浓度增加, 直链淀粉和亲水胶体间的相互作用增强^[30]。

2.5 硬度分析

如图 5 所示,添加亲水胶体可降低小麦淀粉样品的凝胶硬度。与 WS 凝胶相比,WS-A2 和WS-L2的凝胶硬度分别降低 28%和 16%,表明添加亲水胶体可以使淀粉凝胶质地变得更柔软。Liu

等^[24]和 Zheng 等^[17]也发现了类似的变化趋势,他 们报道添加大豆可溶性多糖和黄原胶降低了莲子 淀粉和葛根淀粉的凝胶硬度。这可能是亲水胶体 在淀粉三维网状组织中形成屏障,阻止了淀粉羟 基之间的缔结^[13]。WS-A2的凝胶硬度比WS-L2 约低 23 g。与WS-A2和WS-L2相比,WS-AnLm表 现出更低的凝胶硬度。所有淀粉凝胶中,WS-A1L1 的凝胶硬度最低,为 96 g,比WS-A2和WS-L2 的凝胶硬度分别降低了 24%和 36%,表明 AG 和 LBG 之间存在协同效应,明显阻止了小麦淀粉凝 胶网络结构的形成。Zhang 等^[15]研究表明添加田 菁胶和改性淀粉复配物使小麦淀粉具有最低的 凝胶硬度。

Fig. 5 Gel firmness of WS and WS-gum blends

3 结论

添加海藻酸钠(AG)和刺槐豆胶(LBG)可 以提高小麦淀粉凝胶的 G'、G"、EI、MVI 和 K 值,增强小麦淀粉--亲水胶体复合体系凝胶的黏弹 性和稠度。不同配比的 AG 和 LBG 对小麦淀粉凝 胶的流变学特性和质构特性影响不同。AG 和 LBG 质量比为1:1时,AG 和 LBG 之间存在协 同作用,可以改善小麦淀粉凝胶的流变学特性, 增强小麦淀粉凝胶网络结构。本文的研究结果可 为AG-LBG 复配物在淀粉凝胶类食品中的应用提 供理论参考。

参考文献:

[1] POURFARZAD A, YOUSEFI A, AKO K. Steady/dynamic rheological characterization and FTIR study on wheat starch-

sage seed gum blends[J]. Food Hydrocolloids, 2021, 111: e106380.

- [2] ZHANG C, LIM S T. Physical modification of various starches by partial gelatinization and freeze-thawing with xanthan gum[J]. Food Hydrocolloids, 2021, 111: e106210.
- [3] LUO Y, XIAO Y H, SHEN M Y, et al. Effect of mesona chinensis polysaccharide on the retrogradation properties of maize and waxy maize starches during storage[J]. Food Hydrocolloids, 2020, 101: e105538.
- [4] KANG Z L, WANG T T, LI Y P, et al. Effect of sodium alginate on physical-chemical, protein conformation and sensory of low-fat frankfurters[J]. Meat Science, 2020, 162: e108043.
- [5] KIM H S, BEMILLER J N. Effects of hydrocolloids on the pasting and paste properties of commercial pea starch[J]. Carbohydrate Polymers, 2012, 88(4): 1164-1171.
- [6] FANG F, LUO X, BEMILLER J N, et al. Neutral hydrocolloids promote shear-induced elasticity and gel strength of gelatinized waxy potato starch[J]. Food Hydrocolloids, 2020, 107: e105923.
- [7] HUSSAIN R, SINGH A, VATANKHAH H, et al. Effects of locust bean gum on the structural and rheological properties of resistant corn starch[J]. Journal of Food Science and Technology, 2017, 54(3): 650-658.
- [8] YOO D, KIM C, YOO B. Steady and dynamic shear rheology of rice starch-galactomannan mixtures[J]. Starch-Stärke, 2005, 57(7): 310-318.
- [9] PRAJAPATI V D, JANI G K, MORADIYA N G, et al. Locust bean gum: A versatile biopolymer[J]. Carbohydrate Polymers, 2013, 94(2): 814-821.
- [10] LEE H Y, JO W, YOO B. Rheological and microstructural characteristics of rice starch-tara gum mixtures[J]. International Journal of Food Properties, 2017, 20(sup2): 1879-1889.
- [11] ZHANG Y Y, LI M J, YOU X G, et al. Impacts of guar and xanthan gums on pasting and gel properties of high-amylose corn starches[J]. International Journal of Biological Macromolecules, 2020, 146: 1060-1068.
- [12] SUN Y, WANG M C, MA S P, et al. Physicochemical characterization of rice, potato, and pea starches, each with different crystalline pattern, when incorporated with konjac glucomannan[J]. Food Hydrocolloids, 2020, 101: e105499.
- [13] LI Q Q, WANG Y S, CHEN H H, et al. Retardant effect of sodium alginate on the retrogradation properties of normal cornstarch and anti-retrogradation mechanism[J]. Food Hydrocolloids, 2017, 69: 1-9.
- [14] ZHANG Y, ZHAO X T, BAO X Y, et al. Effects of pectin and heat-moisture treatment on structural characteristics and physicochemical properties of corn starch[J]. Food Hydrocolloids, 2021, 117: e106664.
- [15] ZHANG D X, LIN Z T, LEI W, et al. Synergistic effects of acetylated distarch adipate and sesbania gum on gelatinization and retrogradation of wheat starch[J]. International Journal of Biological Macromolecules, 2020, 156: 171-179.
- [16] YADAV K, YADAV B S, YADAV R B, et al. Physicochemical,

pasting and rheological properties of colocasia starch as influenced by the addition of guar gum and xanthan gum[J]. Journal of Food Measurement and Characterization, 2018, 12(4): 2666-2676.

- [17] ZHENG Y X, SUN W X, YANG W H, et al. The influence of xanthan gum on rheological properties and in vitro digestibility of kudzu (*pueraria lobata*) starch[J]. Starch-Stärke, 2020, 72(3-4): e1900139.
- [18] LIN S Y, LIU X E, CAO Y, et al. Effects of xanthan and konjac gums on pasting, rheology, microstructure, crystallinity and *in vitro* digestibility of mung bean resistant starch[J]. Food Chemistry, 2021, 339: e128001.
- [19] YU Z, WANG Y S, CHEN H H, et al. The gelatinization and retrogradation properties of wheat starch with the addition of stearic acid and sodium alginate[J]. Food Hydrocolloids, 2018, 81: 77-86.
- [20] ZHANG M, SUN C, WANG X R, et al. Effect of rice protein hydrolysates on the short-term and long-term retrogradation of wheat starch[J]. International Journal of Biological Macromolecules, 2020, 155: 1169-1175.
- [21] SHAHZAD S A, HUSSAIN S, ALAMRI M S, et al. Use of hydrocolloid gums to modify the pasting, thermal, rheological, and textural properties of sweet potato starch[J]. International Journal of Polymer Science, 2019, 2019: e6308591.
- [22] CAI X R, DU X F, ZHU G L, et al. The use of potato starch/xanthan gum combinations as a thickening agent in the formulation of tomato ketchup[J]. CyTA-Journal of Food, 2020, 18(1): 401-408.
- [23] DANGI N, YADAV B S, YADAV R B. Pasting, rheological, thermal and gel textural properties of pearl millet starch as modified by guar gum and its acid hydrolysate[J]. International Journal of Biological Macromolecules, 2019, 139: 387-396.
- [24] LIU D, LI Z, FAN Z W, et al. Effect of soybean soluble polysaccharide on the pasting, gels, and rheological properties

of kudzu and lotus starches[J]. Food Hydrocolloids, 2019, 89: 443-452.

- [25] ZHU Q M, QIU S, ZHANG H W, et al. Physical stability, microstructure and micro-rheological properties of water-in-oilin-water (w/o/w) emulsions stabilized by porcine gelatin[J]. Food Chemistry, 2018, 253: 63-70.
- [26] SU J Q, GUO Q, CHEN Y L, et al. Characterization and formation mechanism of lutein pickering emulsion gels stabilized by β-lactoglobulin-gum arabic composite colloidal nanoparticles[J]. Food Hydrocolloids, 2020, 98: e105276.
- [27] HE J, HAN Y M, LIU M, et al. Effect of 2 types of resistant starches on the quality of yogurt[J]. Journal of Dairy Science, 2019, 102(5): 3956-3964.
- [28] TISSERAND C, FLEURY M, BRUNEL L, et al. Passive microrheology for measurement of the concentrated dispersions stability[M]//STAROV V, GRIFFITHS P. UK Colloids 2011, Berlin, Heidelberg: Springer Berlin Heidelberg, 2012: 101-105.
- [29] XU D X, ZHANG J J, CAO Y P, et al. Influence of microcrystalline cellulose on the microrheological property and freeze-thaw stability of soybean protein hydrolysate stabilized curcumin emulsion[J]. LWT-Food Science and Technology, 2016, 66: 590-597.
- [30] da SILVA COSTA R A, BONOMO R C F, RODRIGUES L B, et al. Improvement of texture properties and syneresis of arrowroot starch (*Maranta arundinacea*) gels by using hydrocolloids (guar gum and xanthan gum)[J]. Journal of the Science of Food and Agriculture, 2020, 100(7): 3204-3211.
- [31] LIU H M, MIAO W B, WANG R, et al. Improvement of functional and rheological features of tigernut tuber starch by using gum derived from Chinese quince seeds[J]. LWT-Food Science and Technology, 2021, 143: e111180.
- **备注:**本文的彩色图表可从本刊官网(http://lyspkj.ijournal.cn)、中国知网、万方、维普、超星等数据库下载获取。