直接提取进样石墨炉原子吸收法 测定大米中的镉含量

肖竹青.袁丽红.张 华.陈

(华测检测认证集团股份有限公司.上海 201206)

要:建立直接提取进样石墨炉原子吸收仪测定大米中镉含量的分析方法。将粉碎的大米用 0.5% 硝酸 +0.1% 曲拉通混合液提取、稀释定容,摇匀待测。以 NH4H, PO4 + Mg(NO3),为基体改进 剂,用塞曼效应扣背景的方式,分别采用一步灰化(氩气)、两步灰化(氩气+空气)标准曲线法和标准 加入法测定大米中的镉含量。结果表明三种方法测试样品的 RSD(N=6) 值分别为 1.78%、3.29%、 0.62%, 加标回收率分别为114.7%、103.9%、102.5%, 检出限分别为0.025、0.031、0.035 μg/L。经t 检验,两两比较,两步灰化和标准加入法无显著性差异,且精密度和准确度都能够满足要求。直接稀 释进样测定大米中镉含量的方法操作简便,分析速度快,无污染,灵敏度高且准确性好。

关键词:石墨炉原子吸收;大米;直接稀释进样;镉

中图分类号:TS 207.5 文献标识码:A 文章编号:1007-7561(2016)01-0061-03

Determination of cadmium content in rice by direct dilution injection graphite furnace atomic absorption spectrometry

XIAO Zhu - qing, YUAN Li - hong, ZHANG Hua, CHEN Yu (Centre Testing International Group Co. Ltd., Shanghai 201206)

Abstract: Objective: To establish the method of determination of cadmium in rice by direct dilution injection graphite furnace atomic absorption spectrometry. Methods: Crushed rice was diluted by mixture of 0.5% nitric acid and 0.1% Triton. Then the diluent was well shaken for further test. NH4H2PO4+Mg (NO₃)₂ were chosen as the matrix modifier, while the Zeeman effect background deduction method was adopted. The samples were subjected to one - step ashing method (argon), and two - step ashing method (argon + air), respectively, to create external standard calibration curves. The standard addition method was used to determine cadmium content in rice. The results showed that the RSD(N = 6) of three methods were 1.78%, 3.29%, and 0.62%, while the recovery rates were 114.7%, 103.9%, and 102.5%. The detection limits were 0.025,0.031, and 0.035 µg/L. After T test of pairwise comparison, no significant difference was shown between two - step ashing method and standard addition method, and the accuracy and precision meet the requirements for determination well. Conclusion: As a simple, rapid and non - polluting method, the direct dilution injection graphite furnace atomic absorption spectrometry can be used for the determination of cadmium content in rice precisely and accurately.

Key words: Graphite furnace atomic absorption; rice; direct dilution sampling; Cadmium

镉长期在人体蓄积,会导致肾脏损伤,危害人体 健康。镉是粮食卫生指标的必检项目。国家标准中 测定食品中镉含量的方法有石墨炉原子吸收法、火 焰原子吸收光谱法、比色法和原子荧光法。传统方 法测定食品中的镉主要用湿法、干法、微波消解等方 式处理样品,耗时费力,且需要用到酸,过氧化氢等 试剂,污染环境并造成检测人员的健康损害[1-5]。

1. 1

仪器与设备

材料与方法

优测试方法。

1

AA800 原子吸收分光光度计:美国埃尔默铂金 仪器有限公司: PL403 电子天平: 梅特勒 - 托利多仪

同时样品在消解和转移的过程中容易污染和损失,

都会影响测定结果的准确性。本实验用直接稀释进 样的方法测定大米中的镉含量,采用一步灰化、两步

灰化和标准加入法的方式测定,并进行比较,确定最

收稿日期:2015-06-05

作者简介:肖竹青,1988年出生,女,硕士,工程师.

器上海有限公司; WH-861 漩涡混合器: 太仓华利达实验设备有限公司; 超纯水处理系统: 美国 MIL-LIPORE 公司; HR2168 搅拌机: 飞利浦公司。

1.2 试剂

铅标准溶液(国家二级标准物质):上海市计量测试技术研究院;硝酸(UP级):苏州晶瑞化学有限公司;X-100曲拉通(99.0%)创赛公司;磷酸二氢铵(优级纯):上海润捷化学试剂有限公司;硝酸镁(光谱纯):天津市光复精细化工研究所。

1.3 样品前处理

将大米用粉碎机粉碎,过 100 目筛(直径为0.15 mm),称取过筛后的样品 0.5 g 左右至带盖的聚丙烯材料的刻度管中,用 0.5% 硝酸 +0.1% 曲拉通混合液提取,稀释定容至 10 mL,涡旋振荡 1 min,摇匀待测。

1.4 仪器工作条件

测定波长:Cd 为 228.8 nm;灯电流:4 Aa;狭缝: 0.7 nm;基体改进剂:5 μL;正常气体:氩气;特殊气体:空气;塞曼效应扣背景;按峰面积计算结果。对稀释后的样品进行上机测定,表 1 为采用一步灰化的方式测定(全部为氩气),表 2 为采用两步灰化的方式测定(氩气和空气)。

表 1 一步灰化测定镉的工作程序

步骤	温度 /℃	爬升时间 /s	保留时间 /s	内部流量 /(mL/min)	气体 类型
干燥 1	110	5	30	250	正常
干燥 2	130	15	30	250	正常
灰化	500	10	20	250	正常
原子化	1 500	0	5	0	正常
清除	2 450	1	3	250	正常

表 2 两步灰化测定镉的工作程序

步骤	温度	爬升时间	保留时间	内部流量	气体
	/℃	/s	/s	/(mL/min)	类型
干燥 1	110	5	30	250	正常
干燥2	130	15	30	250	正常
灰化1	400	15	15	50	特殊
灰化2	500	10	20	250	正常
原子化	1 500	0	4	0	正常
清除	2 500	1	5	250	正常

2 结果与分析

2.1 样品粒径大小对检测结果的影响

大米粉碎粒径的大小会影响测定结果,大小不均一,使得曲拉通溶液与样品不能充分接触,影响浸出率,重复性差,准确度低。大米的标准物质具有很好的均一性,粒径小,重复测定镉含量,结果都在0.018±0.002 mg/kg。以大米的标准物质粒径大小为参考,将大米粉碎为粒径大小0.15 mm,重复测定,RSD 值都在5%以内,不影响测定结果^[6]。

2.2 表明活性剂用量的选择

曲拉通是一种很好的表面活性剂,能够使样品 形成均一的稳定相,但浓度不能过高,否则会产生严 重的泡沫,采用不同浓度的曲拉通溶液,测定大米的 标准物质,实验表明 0.1% 的曲拉通就能使大米形 成均匀的溶液,且不影响测定结果(见图 1)。

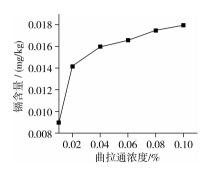


图 1 曲拉通浓度对大米中镉含量测定

2.3 酸浸提液浓度的选择

选取不同浓度的硝酸作为浸提液进行实验,筛选大米中镉浸提率最佳的酸浓度,如图 2 所示随着酸浓度的增加,大米中镉含量也增加,当硝酸浓度为0.5%时,大米的测定值为0.018 mg/kg,在0.018 ±0.002 mg/kg范围内,考虑到酸浓度过大对石墨管的损耗,因此选择0.5%硝酸作为浸提液测定大米中的镉含量^[2]。

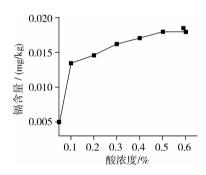


图 2 硝酸浓度对大米中镉含量测定

2.4 基体改进剂的选择

由于样品是直接稀释进样,没有消解程序,所以含有大量的有机物,容易产生干扰,使用基体改进剂可以使待测元素易保留,样品基体更容易挥发,降低背景干扰。本实验以磷酸二氢氨和硝酸镁作为基体改进剂^[4,7]。

2.5 测试方式的选择

对于未消解的样品,含有机物较多,基质较复杂,灰化的过程中通入空气,有利于有机物的分解,减少背景干扰,利于待测元素的测定,对于基质简单的样品有时无需通入空气也能准确测定结果。同时标准加入法也能够消除基体成分带来的干扰^[2]。对于未经消解直接稀释的大米样品,可通过对这三种方法进行比较,选择最佳测定大米中镉含量的方法。

2.6 不同检测方法的线性关系及检出限

镉的线性范围在 $0 \sim 2 \mu g/L$, 三种方法(一步灰化, 两步灰化, 标准加入法) 镉的质量浓度与吸光度都呈现良好的线性关系, 线性方程分别为 y = 0.059 61x -0.000 96, y = 0.052 18x + 0.000 37, y = 0.041 10x, 相关系数分别为 0.999 7, 0.999 3, 0.996 0, 检出限分别为 0.025, 0.031, $0.035 \mu g/L$ 。

2.7 不同检测方法的精密度

为了解不同方法测定样品的准确度,用 0.5% 硝酸+0.1% 曲拉通混合液提取大米样品三份,每份平行测定 6次,取平均值。结果见表 3、表 4 和表 5。一步灰化法测得大米镉含量的平均值为 0.008 6 mg/kg,RSD 值为 1.78%;两步灰化法为 0.009 3 mg/kg,RSD 值为 3.29%;标准加入法 为 0.009 6 mg/kg,RSD 值为 0.62%。三种方法的精密度均小于 4%,说明测定大米中镉含量具有较好的稳定性。采用 SPSS17.0独立样本 T 检验分析两组数据,一步灰化和两步灰化方法比较,具有显著性差异,两步灰化和标准加入法无显著性差异(P<0.05)。

表 3 一步灰化法测定大米中镉的精密度

7	样品号	0.5% 硝酸 +0.1% 曲拉通混合液 稀释测定值/(mg/kg)	平均值/ (mg/kg)	RSD/%
	1	0. 008 9 0. 008 7 0. 008 6 0. 008 5 0. 008 8 0. 008 6	0.008 7	1.76
	2	$0.\ 008\ 5\ 0.\ 008\ 5\ 0.\ 008\ 6\ 0.\ 008\ 5\ 0.\ 008\ 7\ 0.\ 008\ 9$	0.0086	2.02
	3	0. 008 4 0. 008 1 0. 008 2 0. 008 5 0. 008 2 0. 008 4	0.0084	1.99

表 4 两步灰化法测定大米中镉的精密度

样品号	0.5% 硝酸 + 0.1% 曲拉通混合液 稀释测定值/(mg/kg)	平均值/ (mg/kg)	RSD/%
1	0.009 6 0.009 6 0.009 5 0.009 6 0.009 6 0.009 5	0.009 6	0. 447
2	$0.\ 009\ 4\ 0.\ 009\ 5\ 0.\ 009\ 3\ 0.\ 009\ 2\ 0.\ 009\ 4\ 0.\ 009\ 4$	0.0094	1.083
3	0. 009 1 0. 009 0 0. 008 8 0. 008 7 0. 009 0 0. 009 1	0.0090	1.888

表 5 标准加入法法测定大米中镉的精密度

样品号	0.5% 硝酸 +0.1% 曲拉通混合液 稀释测定值/(mg/kg)	平均值/ (mg/kg)	RSD/%
1	0. 009 6 0. 009 4 0. 009 5 0. 009 5 0. 009 7 0. 009 6	0.009 6	0.819
2	$0.\ 009\ 7\ 0.\ 009\ 7\ 0.\ 009\ 5\ 0.\ 009\ 5\ 0.\ 009\ 6\ 0.\ 009\ 5$	0.0096	1. 212
3	$0.\ 009\ 7\ 0.\ 009\ 5\ 0.\ 009\ 2\ 0.\ 009\ 9\ 0.\ 009\ 5\ 0.\ 009\ 4$	0.009 5	2. 216

2.8 不同检测方法的准确度

为了解不同方法测定样品的准确度,分别对提取的大米样品进行真值回归和加标实验。选大米标准物质(GBW 10044)进行直接提取和微波消解两种处理方式进行比对,结果见表6。采用直接提取进样的前处理测定结果都在标准值范围之内,表明测定结果准确度好;采用微波消解处理样品,虽然用AA和ICP-MS测定结果都比直接提取进样测定结果偏低(可能是样品在消解和转移样品过程中有所

损失引起的。)但测定的结果都无显著性差异。确定仪器和方法的准确性后,对实际大米样品进行加标实验,结果见表 7。三种方法的加标回收率分别为 114.7%、103.9%、102.5%,一步灰化的回收率偏高,说明测定结果偏低,可能与样品的有机物在石墨炉内灰化的效率有关。两步灰化和标准加入法的回收率都在范围内,能够满足测定准确度的要求。

表 6 不同检测方法测定标准物质大米中镉含量

	AA	测定值/(n	ng/kg)	ICP – MS	1- ve /= /
前处理方式	一步 灰化	两步 灰化	标准 加入法	测定值/ (mg/kg)	标准值/ (mg/kg)
直接提取进样	0. 018	0. 019	0. 018	/	0. 018 ±
微波消解	0.015	0.016	0.016	0.015	0.002

表7 大米加标的回收率

测定方式	样品质量浓 度/(μg/L)	加标质量浓 度/(μg/L)	总测定质量 浓度/(μg/L)	回收率 /%
一步灰化	0. 655	1	1. 802	114. 7
两步灰化	0.724	1	1. 763	103. 9
标准加入法	0. 689	1	1.714	102. 5

3 结论

对于均匀性和稳定性都非常好的大米标准物质,以磷酸二氢氨和硝酸镁为基体改进剂,用直接提取(0.5% 硝酸+0.1% 曲拉通)进样的方法处理大米样品,无论采用一步灰化、两步灰化(通入空气)还是标准加入法测定结果的精密度和准确度都能够满足要求。但对于实际的大米样品,由于样品的均一性较差,采用一步灰化测定结果偏低。选择两步灰化和标准加入法都可以准确测定。直接提取进样测定大米中的镉含量,该方法操作简单,分析速度快,无污染,灵敏度高,准确性好。适用于大批大米样品中镉的测定。

参考文献:

- [1] GB/T 5009. 15—2003, 食品中镉的测定[S]. 北京: 中国标准出版 社 2004
- [2]吴云钊,孟鹏,曹民,等. 不完全消解 石墨炉原子吸收光谱法测定粮食中的铅和镉[J]. 中国卫生检验杂志,2014,17(24):2464-2466.
- [3]宋丹,杨仁康,吕慧威,等.不完全消解法在石墨炉测定大麦芽铅含量中的应用[J].啤酒科技,2011(7):30-31.
- [4] 林洁, 黄棉汝, 彭乐恺. 半消解 混合基体改进剂石墨炉原子吸收法测定生食腌制海产品中铅镉[J]. 中国卫生检验杂志, 2014, 2(24):185-187.
- [5]王云,吴婷婷,蒋忠瑭. 石墨炉原子吸收法直接进样测定食醋中的铅[J]. 中国卫生检验杂志,2011,4(21);822-823.
- [6]周明慧,王松雪,伍燕湘. 稀酸温和提取直接进样石墨炉原子吸收法快速测定谷物中铅的含量[J]. 分析化学,2014,3(42):459-460.
- [7]秦杰,陈尚龙,苗敬芝,等. 不完全消解 高分辨连续光源石墨炉原子吸收光谱法测定蔗糖中镉和铅[J]. 中国调味品,2013,11 (38):55-58. 🕏