陈君石院士、Rudolf Krska 教授主持“2023 中国国际食品安全与质量控制大会”特约专栏文章之二
胚胎发育毒性(embryo developmental toxicity,EDMT)是指母体暴露于化学物后对胚胎产生的毒害作用,主要表现有胚胎死亡、生长改变、功能缺陷和结构异常等[1]。据全球卫生统计报道,由胚胎发育毒性引起的胚胎停育或流产等不良妊娠结局是一种广泛存在且非常严重的临床病症,不仅损害女性健康,也对全球人口质量有很大影响[2]。同时,该类疾病的病因复杂,发病机制也尚未完全阐明。除了工作压力、精神压力、遗传因素和感染外,母体内分泌失调、子宫病变和环境污染物等也是公认的重要诱因[3-5]。
真菌毒素是某些真菌菌种在特定条件下产生的有毒次级代谢产物。多项研究证实,黄曲霉毒素(aflatoxin,AF)、脱氧雪腐镰刀菌烯醇(deoxynivalenol,DON)、玉米赤霉烯酮(zearalenone,ZEN)等传统真菌毒素和交链孢毒素等新兴真菌毒素的暴露与胚胎停育和流产等不良妊娠结局密切相关[6-22]。欧盟食品和饲料快速预警体系通报显示,在被通报的26 种食品安全风险因素中,真菌毒素的通报量始终排在前三位。且涉及的食品也是目前孕妇摄入较多的食品种类[18]。此外,随着全球气候变暖、环境污染加剧,产毒真菌和真菌毒素代谢谱均发生了显著变化。近年来,研究发现较晚且难以通过常规方法进行提取和检测的新兴真菌毒素不断被报道[19-22]。但该类毒素目前尚未制定统一的检测方法标准,也未制定相应的限量标准,对其污染监测与监控也尚无有效措施[19-22]。
因此,为了预防和降低孕期传统和新兴真菌毒素暴露对胎儿和母体健康的影响,本文系统梳理了孕期真菌毒素暴露造成的胚胎发育毒性及以生物标志物为基础的生物监测技术的研究现状,为全面落实《“健康中国2030”规划纲要》中切实保障母婴健康的理念保驾护航。
研究证实,孕期膳食中AF、DON、ZEN 和赭曲霉毒素(ochratoxin,OTA)等传统真菌毒素的暴露,不仅会对孕妇自身健康产生危害,还与不孕、宫内胎儿生长受限、胚胎停育,婴幼儿发育迟缓、消瘦和体重过轻等密切相关[6-17,23-27]。
1.1.1 AF
AF 是一类由黄曲霉和寄生曲霉等产生的化学结构已知的双呋喃环类真菌毒素。AF 能通过胎盘屏障影响宫内胎儿生长和发育,引起宫内胎儿停育、流产和新生儿死亡等,并可存在于母乳中对孕妇及宫内胎儿的健康造成近期和远期的影响。Wild 等和Hendrickse 等对非洲西部冈比亚等国家流产胎儿的病因学诊断发现,AF 可穿过胎盘屏障、存在于脐带和母乳中影响胎儿健康[13-14]。Jonsyn 对塞拉利昂64 份孕妇脐带血样本的分析显示,58%的样本中存在AF[26]。Turner 等发现,孕妇体内AF 的暴露水平与婴儿发育尤其是出生后第一年的受损程度显著相关[16-17]。Hadhoud 等发现,孕妇血清和新生儿脐带血中AF 的暴露可能是不明原因新生儿黄疸的主要病因[28]。
1.1.2 DON
DON 的胚胎发育毒性主要表现为可造成妊娠期动物流产或对胚胎产生致畸作用。研究发现,DON 可通过胎盘屏障作用于胎猪,使发育中的胎猪暴露在DON 及其代谢产物中造成胚胎发育毒性[29]。DON 经口灌服后可导致胎鼠和仔鸡的骨骼畸形和小鼠生殖细胞数量下降[29]。于爱莲等发现,高剂量DON(10mg/kg)对小鼠具有明显的胚胎毒性和致畸作用,并引起多发性骨骼畸形[30]。将小鼠于孕期第7~10 d 连续进行腹腔注射染毒并于妊娠第18 d 处死孕鼠,结果发现与对照组相比,各染毒剂量组活胎数、产仔数和胎鼠体重均较低,差异具有统计学意义;但各组吸收胎数均较高,差异无统计学意义。此外,高剂量组胎鼠出现尾部畸形,如短尾、卷尾、短尾合并卷尾。各染毒组均不同程度地出现骨骼畸形,尤其是高剂量染毒组,该组胎鼠均出现多发性骨骼畸形且多种畸形并存,以胸骨及肋骨畸形最为常见,其中肋骨缺失率最高[30]。Toutounchi 等发现将雌性小鼠饲喂受DON 污染的饲料会降低胎鼠的存活率,并在胎鼠体内检测到高水平的DON[31]。Tan 等通过前瞻性队列研究发现,孕期DON 的暴露可能导致胎儿生长迟缓,建议采取措施减少孕妇DON暴露[32]。方海琴等利用小鼠胚胎干细胞和人胚胎干细胞模型评价了DON 的胚胎发育毒性,结果发现DON 对两种细胞均具有较强的胚胎毒性。排除物种差异的人胚胎干细胞模型被认为是一种更准确可靠的胚胎毒性评估方法[33]。
1.1.3 ZEN
ZEN 最重要的毒性效应是类雌激素效应。流行病学调查研究显示,对于孕妇来说,长期通过食物接触ZEN 可能会导致孕期胚胎存活率下降、胎儿体重减轻和产奶量下降等不良影响,并可引起子宫组织形态改变和黄体酮水平下降等[34]。ZEN可以与α 和β 雌激素受体结合进而破坏人体的内分泌系统。对ZEN 影响最敏感的物种是猪和反刍动物,而抵抗力最强的物种是鸟类,如鸡等[35-37]。妊娠期ZEN 的暴露,可引起胚胎死亡、出生胎儿体重降低、同窝产仔数量减少、新生动物生存能力降低等不良妊娠结局,甚至成年期的动物生殖功能受损如生育障碍(不孕或生育能力下降)、阴道脱垂、雌性外阴肿胀和乳房增大、睾丸萎缩的雌性化以及多种雄性动物的乳腺增大[35-37]。如当孕牛采食ZEN 含量达10 mg/kg 的饲料时,孕牛体内胚胎再吸收或流产(受孕后1~3 个月内)的概率明显上升[35-37]。孕期母猪暴露于ZEN 的阈值水平(200 µg/kg bw.d)时,将导致胚胎存活率和出生后仔猪的体重降低,同时ZEN 还可透过胎盘屏障引起仔猪生殖器异常等[35-37]。Kunishige 等对妊娠期小鼠每日皮下注射ZEN(2、4 或8 mg/kg),通过与治疗组比较妊娠18 d 的活胎数量、胎儿体重等发现,ZEN 的作用方式与雌二醇类似,可阻碍妊娠进程,如胚胎从输卵管迁移到子宫、蜕膜反应和黄体功能的激活等。此外,还可导致胚胎植入延迟和受孕后胚胎丢失,低剂量暴露后还会引起正常植入后的胎儿生长迟缓[38]。Gao 研究发现大鼠产前接触ZEN 会影响母体和胎儿发育,并可能导致F1 成年雌性的长期生殖障碍。在20 mg/kg ZEN 组的F1 雌性成年大鼠中发现了显著的卵泡闭锁和子宫层变薄。此外,10 和/或20 mg/kg ZEN暴露显著降低了胎盘、胎儿和断奶F1 雌性后代脑中的Esr1、促性腺激素释放激素受体等的含量,引起胎盘中3β-羟基类固醇脱氢酶的剂量依赖性增加[39]。
1.1.4 OTA 等其它传统真菌毒素
Zimmerli 等发现分娩时脐带血中OTA 的含量水平是母体血液中OTA 含量的2 倍,表明OTA 在孕妇体内可通过胎盘主动转移,并影响胎儿及婴幼儿的肾功能、引发泌尿系统肿瘤[25]。Jonsyn 等对塞拉利昂母乳样品的分析发现,35%的母乳样品中可检出OTA(含量范围为200~337 ng/mL)[26]。另有大量研究证实,伏马菌素(fumonisin,FB)等真菌毒素的暴露与五岁以下儿童的生长发育和宫内影响不良导致的生长迟缓等密切相关[40-42]。
近年来,随着气候变暖、环境污染加剧,新兴真菌毒素及其产毒菌株受到的关注越来越多。欧洲食品安全局(European Food Safety Authority,EFSA)也陆续发布了食品和饲料中交链孢毒素、白僵菌素和恩镰孢菌素、雪腐镰刀菌烯醇(nivalenol,NIV)等新兴真菌毒素的风险评估报告,并发现多种新兴真菌毒素均具有胚胎发育毒性。
1.2.1 交链孢毒素
Pollock 等研究发现,在孕早期单次给予叙利亚金黄地鼠剂量为200 mg/kg.bw 的交链孢酚单甲醚(alternariol monomethyl ether,AME)时,即可对孕鼠及体内胎鼠产生毒性效应,如可引起宫内胎鼠被吸收的比例上升和出生胎鼠的体重下降等[43]。Pero 等连续4 d 每天给予孕早期的DBA/2小鼠皮下注射交链孢酚(alternariol,AOH)(100 mg/kg.bw),发现与口服蜂蜜水的对照组相比,AOH 在该剂量下对胎儿也具有强烈的毒性效应如引起宫内胎鼠死亡、胎鼠被吸收、矮鼠、畸型鼠的比例上升[44]。该研究还发现,AOH 和AME的胚胎毒性具有协同效应。孕早期连续4 d 每天同时给予AOH 和AME(1∶1,均为25 mg/kg.bw),引起畸型胎鼠或流产胎鼠的比例明显上升[44]。Tieman 等在体外细胞水平的研究发现,将浓度均为0.8 μmol/L 的AOH、AME 和细交链孢菌酮酸(Tenuazonic acid,TeA)的标准溶液分别给予保留了激素反应性能和生理功能的猪颗粒细胞,发现AOH 和AME 可以特异性地抑制孕酮P4 的分泌和合成,表明AOH 和AME 可直接影响卵母细胞的生长和代谢[45]。
1.2.2 白僵菌素(beauverin,BEA)和恩镰孢菌素(enniatins,ENNs)
目前,关于BEA 和ENNs 胚胎发育毒性的研究数据较少,但有限的数据表明,它们仍有胚胎发育毒性[46]。BEA 可能会影响猪和羊的生殖功能,损害卵母细胞的发育[47]。BEA 和恩镰孢菌素A(enniatin A,ENA)对牛颗粒细胞类固醇生成具有显著的抑制作用[47]。另有研究发现,将小鼠静脉注射不同浓度1、3 和5 mg/kg bw/d 的恩镰孢菌素B1(enniatin B1,ENB1),发现注射ENB14 d后可对小鼠胚泡产生毒性,引起胚泡期胚胎的凋亡和胚胎从受精卵到胚泡的发育。随后胚胎退化,且高浓度下可明显诱导胚胎发育过程中产生氧化应激和免疫毒性[48]。Wang 等研究发现,ENB1 对猪早期胚胎有不利影响,可显著降低猪胚胎的卵裂率、囊胚率和囊胚细胞数,并呈剂量和时间依赖性。重要的是,ENB1 通过下调Sod1、Gpx4、Cat 和Bcl2l1 的表达,上调Bax 和Caspase3 的转录可引发胚胎凋亡[49]。此外,ENB1 还能显著破坏Dnmt1、Dnmt3a、Tet1 和Tet3 的转录,进一步导致CenRep、Oct4、Nanog 和Sox2 的DNA 去甲基化不完全,进而引起Eif1a、Oct4、Nanog 和Sox2的表达显著降低。Chiminelli 等通过对牛颗粒细胞的体外研究表明,ENA 可抑制激素诱导的牛颗粒细胞中孕酮和雌二醇的生成。ENA 对雌二醇生成的抑制作用在小卵泡中比在大卵泡中更明显。据此可推断ENA 可直接抑制牛的卵巢功能,减少牛颗粒细胞的增殖和类固醇的产生[50]。
1.2.3 脱氧雪腐镰刀菌烯醇-3-葡萄糖苷(deoxynivalenol-3-glucoside,DON-3-G)等其他新兴真菌毒素
研究表明,DON-3-G 是一种常见的隐蔽型毒素,常与DON 共存于粮谷及其制品中。它可在生物体内被肠道中的微生物水解,释放出DON而产生同等甚至更高的毒性水平,造成极大的危害[51]。NIV 可影响孕期小鼠胚胎发育,并通过诱导氧化应激相关细胞凋亡和DNA 损伤来降低小鼠卵母细胞的质量。同时,还可通过影响小鼠卵母细胞成熟过程中纺锤体的形成和细胞器的功能发挥毒性作用[52-54]。Singh 等通过非靶向筛查等技术发现疣孢漆斑菌毒素可能与孕早期胚胎停育相关[55]。
真菌毒素对人体健康效应的评估包括体外暴露评估和体内暴露评估[6-17]。基于食物中毒素污染水平和食物消费量为基础的体外暴露评估是暴露评估常用的方法,但该方法具有难以评估毒素的暴露量与人群健康效应间关系的不足。体内暴露评估是基于毒素的体内代谢转化,通过分析人体尿液、血液等体液中目标物的浓度,计算出人体对毒素的暴露水平。该方法因可直接反映人体对毒素的暴露风险,更适宜于毒素暴露的精准评估,成为近年来暴露评估研究的新趋势[10,56]。灵敏度高、可信性强的生物标志物(biomarker)的发现与挖掘是进行体内暴露评估的关键。根据生物标志物的特性,又分为暴露标志物(Exposure biomarkers)和效应标志物(Biomarkers of effects)[10,56]。目前,对真菌毒素体内暴露评估的研究,多基于其暴露标志物的分析。
暴露标志物是指生物体内某个组织中测量到的外源化合物及其代谢产物,或其外源化合物与靶分子或靶细胞相互作用的产物[6-7]。与体外暴露评估相比,暴露标志物可直接反映毒素在个体水平上吸收、分布、代谢和排泄的差异,更能准确反映毒素的实际暴露水平[6-7]。
多种传统真菌毒素的暴露标志物研究都已得到不同程度的开展,如尿液和血液中暴露标志物的发现。目前,已被验证的暴露标志物有AF 及其代谢物,如尿中AFM1 和AFB1-N7-鸟嘌呤、血中AFB1-ablbumin 等;DON 及其代谢物,如尿中DON、DON-3-葡萄糖醛酸和DOM-1;ZEN 及其代谢物,如尿中ZEN+α-ZOL+β-ZOL、ZEN-14-GlcA或ZEN-Glu,血中ZEN-α-ZOL+β-ZOL;血中OTA;尿中FB1、HFB1,血中Sa/So 等[6-7,25-26,40-42]。且已有研究证实血中AFB1-ablbumin、ZEN 及其代谢物、DON 及其代谢物等的暴露水平与宫内胎儿生长受限甚至胚胎停育的高发显著相关[6-7,23-26]。
目前,对新兴真菌毒素暴露标志物研究的报道不断涌现。AOH、AME 和TeA 已被作为人类尿液中交链孢毒素的暴露标志物[57-58]。细胞和动物试验证实,AOH 和AME 还可被代谢为AOH-3GlcA、AOH-7GlcA、AOH-9GlcA、AME-3GlcA和AME-7GlcA[57-58]。BEA 和ENNs 是具有生物活性的化合物,对其代谢途径的研究仍然不足,测定母体化合物是目前常用的方法[46]。由此可见,新兴真菌毒素的暴露标志物在人体内以游离态和结合态的形式通过尿液排出或存在于血液中[59-61]。葡萄糖醛酸化是人体肝脏II 相代谢的主要途径,肝脏也是新兴真菌毒素的主要代谢器官。葡萄糖醛酸化的新兴真菌毒素在肝脏中形成后可随尿液排出或存在于血液中[59-61]。由于部分代谢物缺少标准品,无法直接测定共轭形式的代谢物。因此,将尿液或血液样品经葡萄糖醛酸酶消化后再进行测定,可以更准确的反映新兴真菌毒素的实际暴露水平[6-7,23-26,46,57-61]。
效应标志物是指当机体暴露于环境污染物时,可检测到的环境污染物对机体生理、生化或病理指标的变化[62]。与暴露标志物相比,效应标志物可反映人体对毒素的长期暴露,并可将效应标志物的含量与健康效应进行关联分析。关于真菌毒素尤其新兴真菌毒素暴露引起的机体氨基酸、有机酸、脂肪酸等小分子效应标志物的研究鲜有报道。
目前,国内外关于传统和新兴真菌毒素及其效应标志物的研究尚在起步阶段。如研究发现宫内AFB1 的暴露与冈比亚婴儿白细胞DNA 甲基化有关,尿液中AF 代谢物的含量与血清乙肝表面抗原阳性和肝癌的发生密切相关[63]。Singh 等[55]在2018 年分别对60 例妊娠早期稽留流产(missed abortion in the first trimester, MAFT)患者和120 例年龄匹配的正常孕妇,通过靶向和非靶向代谢组学结合临床诊断指标,建立了用于胚胎发育毒性早期预测的逻辑回顾模型,发现新兴真菌毒素中疣孢漆斑菌毒素在MAFT 患者孕早期母体血清中的含量明显高于正常孕妇。此外,还发现靶向代谢物包括甘氨酸、醋酸、L-肉碱和肌氨酸等的含量均与胚胎发育毒性密切相关,可用于胚胎发育毒性的早期预测。
截止目前,化学结构已确定的真菌毒素约有300~400 种。全球每年约25%的食品和饲料受到真菌及真菌毒素的污染,产生的直接或间接经济损失高达数百亿美元。我国作为世界上受真菌毒素污染最严重的国家之一,每年约有3 100 万t粮食受到污染。
美国、印度和冈比亚等国家流行病学调查研究显示,孕妇暴露于真菌及真菌毒素污染的环境时其宫内胎儿死亡率远高于平均水平[55]。我国已制定了GB 2761—2017《食品安全国家标准 食品中真菌毒素的限量》,对食品中AFB、DON、ZEN、OTA 和FB 等真菌毒素的限量进行了规定,也制定了相应的检测方法[64-65]。但尚未在全国范围内开展真菌毒素对母婴健康危害的系统监测和评估。考虑到目前全球环境变化加剧和真菌毒素污染现状,有必要在对真菌毒素常规污染监测的基础上,开展传统和新兴真菌毒素胚胎毒性效应的研究,及其暴露的生物监测,为健康中国建设保驾护航。
[1] 秦川. 毒理病理学 [M].北京:科学出版社,2020.QIN C, Toxicopathology [M]. Beijing: Science Press, 2020.
[2] WU H L, MARWAH S, WANG P, et al. Misoprotol for medical treatment of missed abortion: a systematic review and network meta-analysis[J]. Scientific Reports, 2017, 7(1): 1664.
[3] FANG J, XIE B, CHEN B H, et al. Biochemical clinical factors associated with missed abortion independent of maternal age: A retrospective study of 795 cases with missed abortion and 694 cases with normal pregnancy[J]. Medicine, 2018, 97(50): e13573.
[4] JOHNSON TIMOTHY R B. Nutrition and metabolism in pregnancy: mother and fetus[J]. Archives of disease in childhood,1990, 1: 55-56.
[5] ZHOU L Y, ZHANG H X, LAN Y L, et al. Epidemiological investigation of risk factors of the pregnant women with early spontaneous abortion in Beijing[J]. Chinese Journal of Integrative Medicine, 2017, 23(5): 345-349.
[6] SMITH L E, PRENDERGAST A J, TURNER P C. et al. Aflatoxin exposure during pregnancy, maternal anemia, and adverse birth outcomes[J]. American Journal of Tropical Medicine Hygiene,2017, 96(4): 770-776.
[7] PARTANEN H A, E1-NEZAMI H S, LEPPANEN J M, et al.Vahakangas. Aflatoxin B1 transfer and metabolism in human placenta[J]. Toxicological Science: An Official Journal of the Society of Toxicology, 2010, 113(1): 216-225.
[8] ARCE L B, LIZARRAGA E, VETTORAZZI A, et al. Human biomonitoring of mycotoxins in blood, plasma and serum in recent years: a review[J]. Toxins, 2020, 12(3): 147.
[9] SONIA M, GERMAN C S, VICENTE S, et al. The role of mycotoxins in the human exposome: Application of mycotoxin biomarkers in exposome-health studies[J]. Food and Chemical Toxicology, 2018, 121: 504-518.
[10] YANG Y, LI G L, WU D, et al. Recent advances on toxicity and determination methods of mycotoxins in foodstuffs[J]. Trends in Food Science & Technology, 2020, 96: 233-252.
[11] RIVIѐRE KG, LECONTE S, CRAVELI J P, et al. Dietary exposure to mycotoxins in the French infant total diet study[J]. Food and Chemical Toxicology, 2020, 140: 111301.
[12] MARTANI J L. Mycotoxin exposure and infant and young child growth in Africa: What do we know? [J]. Annals of Nutrition &Metabolism, 2014, 64(supp2): 42-52.
[13] WILD C P, RASHEED F N, JOWALA M F, et al. In-utero exposure to aflatoxins in West Africa[J]. Lancet, 1991, 337(8757):1602-1604.
[14] HENDRICKSE R G. Of sick turkeys, kwashiorkor, malaria,perinatal mortality, herion addicts and food poisoning: research on influence of aflatoxins on child health in the tropics[J]. Annals of Tropical Medicine and Parasitology, 1997, 91(7): 787-793.
[15] MAXWELL S M. Investigations into the presence of aflatoxins in human body fluids and tissues in relation to child health in the tropics[J]. Annals of Tropical Paediatrics, 1998, 18: S41-S46.
[16] TURNER P C, MOORE S E, HALL A J, et al. Modification of immune function through exposure to dietary aflatoxin in Gambian children[J]. Environmental Health Perspective, 2003, 111(2):217-220.
[17] TURNER P C, COLLINSON A C, CHEUNG Y B, et al. Aflatoxin exposure in utero causes growth faltering in Gambian infants[J].International Journal of Epidemiology, 2007, 36(5): 1119-1125.
[18] The rapid alert system for food and feed 2017 annual report[EB/OL]. https://ec.europa.eu/food/sites/food/files/safety/docs/rasff_annual_report_2017.pdf.
[19] JESTOI M. Emerging Fusarium-mycotoxins fusaproliferin,beauvericin, enniatins, and moniliformin: a review[J]. Critical Reviews in Food Science and Nutrition, 2008, 48(1): 21-49.
[20] CHRISTIANE G D, BARBARA N, VERONIKA N, et al. Emerging mycotoxins: beyond traditionally determined food contaminants[J]. 2017, 65(33): 7052-7070.
[21] PANASIUK L, JEDZINAK P, PIETRUSZKA K, et al. Frequency and levels of regulated and emerging mycotoxins in silage in Poland[J]. 2019, Mycotoxin Research, 35(1): 17-25.
[22] ABDULLAH K, PASCAL G P M, BARBARA N, et al.Co-occurrence of DON and emerging mycotoxins in Worldwide Finished pig feed and their combined toxicity in intestinal cells[J]. Toxins, 2019, 11(12): 10.3390/toxins11120727.
[23] ZHAO F, LI R, XIAO S, et al. Postweaning exposure to dietary zearalenone, a mycotoxin, promotes premature onset of puberty and disrupts early pregnancy events in female mice[J].Toxicological Sciences, 2013, 132(2): 431-442.
[24] DENG F, TAO F B, LIU D Y, et al. Effects of growth environments and two environmental endocrine disruptors on children with idiopathic precocious puberty[J]. European Journal of Endocrinology, 2012, 166(5): 803-809.
[25] ZIMMERLI B, DICK R. Determination of ochratoxin A at the ppt level in human blood, serum, milk and some foodstuffs by high-performance liquid chromatography with enhanced fluorescence detection and immunoaffinity column cleanup: methodology and Swiss data[J]. Journal of chromatography. B, Biomedical Sciences and applications, 1995, 666: 85-99.
[26] JONSYN F E, MAXWELL S M, HENDRICKSE R G. Human fetal exposure to ochratoxin A and aflatoxins[J]. Annals of Tropical Paediatrics, 1995, 15(1): 3-9.
[27] JESTOI M. Emerging Fusarium-mycotoxins fusaproliferin,beauvericin, enniatins, and moniliformin: a review[J]. Critical Reviews in Food Science and Nutrition 2008, 48(1): 21-49.
[28] HADHOUD S E, ISMAIL S A, YOUSSEF M S. Aflatoxins in sera of pregnant woman and in neonatal cord blood: a possible causal agent in unexplained neonatal jaundice[J]. J. Arab. Child,2001, 12(2): 209-232.
[29] EFSA Panel on Contaminants in the Food Chain (CONTAM);KNUTSEN H K, ALEXANDER J, BARREGÅRD L, et al.Risks to human and animal health related to the presence of deoxynivalenol and its acetylated and modified forms in food and feed[J]. EFSA Journal, 2017 15(9): e04718.
[30] 于爱莲, 李晓霞, 朱小明, 张忠. 脱氧雪腐镰刀菌烯醇对小鼠的胚胎毒性和致畸作用[J]. 环境与健康杂志, 2010, 11:949-951.YU A L, LI X X, ZHU X M, et al. Embryonic toxicity and teratogenicity of oxynivalenol in mice[J]. Journal of Environment and Health, 2020, 11: 949-951.
[31] NEGISA S T, SASKIA B, BELINDA L, et al. Deoxynivalenol exposure during pregnancy has adverse effects on placental structure and immunity in mice model[J]. Reproductive Toxicology, 2022, 112: 109-118.
[32] TAN T, CHEN T, ZHU W, et al. Adverse associations between maternal deoxynivalenol exposure and birth outcomes: a prospective cohort study in China[J]. BMC Med 21, 328, 2023.
[33] FANG H Q, ZHI Y, YU Z, et al. The embryonic toxicity evaluation of deoxynivalenol (DON) by murine embryonic stem cell test and human embryonic stem cell test models[J]. Food Control,2018, 86: 234-240.
[34] GIL-SERNA J, VÁZQUEZ C, GONZÁLEZ-JAÉN M T, et al.Toxicology. In Encyclopedia of Food Microbiology[M]. Batt C A, T M L, Eds.; Academic Press: Cambridge, MA, USA, 2014:887-892.
[35] FIORENZA M, MARIA E D A. Zearalenone and reproductive function in farm animals[J]. International Journal of Molecular Sciences, 2008, 9: 2570-2584.
[36] KAROLINA R, MAGDALENA T. Zearalenone and its matabolitesgeneral overview occurrence, and toxicity[J]. Toxins, 2021, 13: 35.
[37] D’MELLO J P F, PLACINTA C M, MACDONALD A M C.Fusarium mycotoxins: a review of global implications for animal health, welfare and productivity[J]. Anim. Feed Sci. Technol,1990, 80:183-205.
[38] KOHJI K, NORITOSHI K, TOSHI I, et al. Exposure to zearalenone during early pregnancy cause estrogenic multitoxic effects in mice[J]. Reproductive sciences, 2017, 24: 421-427.
[39] XIN G, SUN L H, ZHANG N Y, et al. Gestational zearalenone exposure causes reproductive and development toxicity in pregnant rats and female offspring[J]. Toxins, 2017, 9, 21.
[40] MARROQUÍN-CARDONA A G, JOHNSON N M, PHILLIPS T D, et al. Mycotoxins in a changing global environment-A review[J]. Food and Chemical Toxicology, 2014, 69: 220-230.
[41] MADHU K, DIPENDRA K M, SHEETAL D, et al. Fumonisins:impact on agriculture, food and human health and their management strategies[J]. Toxins(Basel), 2019, 11(6): 328.
[42] NICHOLAS N A K, DANIEL B, SABINE G. Maternal mycotoxin exposure and adverse pregnancy outcomes: a systematic review[J]. Mycotoxin Research, 2020, 36: 243-255.
[43] POLLOCK G A, DISABATINO C E, HEIMSCH R C, et al. The subchronic toxicity and teratogenicity of alternariol monomethyl ether produced by alternaria solani[J]. Food and Chemical Toxicology, 1982, 20(6): 899-902.
[44] PERO R W, POSNER H, BLOIS M, et al. Toxicity of metabolites produced by the Alternaria[J]. Environmental Health Perspectives,1973, 4: 87-94.
[45] TIEMANN U, TOMEK W, SCHNEIDER F, et al. The mycotoxin alternariol and alternariol methyl ether negatively affect progesterone synthesis in porcine granulosa cells in vitro[J]. Toxicology letters,2009, 186(2): 139-145.
[46] EFSA Panel on Contaminants in the Food Chain (CONTAM).Scientific Opinion on the risks to human and animal health related to the presence of beauvericin and enniatins in food and feed[J]. EFSA Journal, 2014, 12(8): 3802.
[47] ILARIA C, LEON J S, EXCEL R S M, et al. Emerging mycotoxins and reproductive effects in animals: A short review[J]. Journal of Applied Toxicology, 2022, 42(12): 1901-1909.
[48] HUANG C H, WANG F T, CHAN W H. Enniatin B1 exerts embryotoxic effects on mouse blastocysts and induces oxidative stress and immunotoxicity during embryo development[J]. Environ Toxicol, 2019, 34(1): 48-59.
[49] WANG X Y, SUN M J, LI J Y, et al. Melatonin protects against defects induced by enniatin B1 during porcine early embryo development[J]. Aging (Albany NY), 2021, 13 (4): 5553-5570.
[50] ILARIA C, LEON J S, EXCEL R S M, et al. In vitro effects of enniatin A on steroidogenesis and proliferation of bovine granulose cells[J]. Toxins, 2022, 14: 714.
[51] VERONIKA N, GERD S. Deoxynivalenol and its masked forms in food and feed[J]. Current Opinion in Food Science, 2015,5:43-49.
[52] ITO Y, OHTSUBO K, ISHII K, et al. Effects of nivalenol on pregnancy and fetal development of mice[J]. Mycotoxin Res,1986, 2(2): 71-77.
[53] WANG Y, XING C H, ZHANG H L, et al. Exposure to nivalenol declines mouse oocyte quality via inducing oxidative stressrelated apoptosis and DNA damage[J]. Bio Reprod, 2021, 105(6): 1474-1483.
[54] WANG Y, PAN Z N, XING C H, et al. Nivalenol affects spindle formation and organelle functions during mouse oocyte maturation[J]. Toxicology and Applied Pharmacology, 2022, 436:115882.
[55] SINGH R O B, SYNGELAKI A, MANDAL R, et al. Firsttrimerster metabolomics prediction of stillbirth[J]. The Journal of Maternal-Fetal and Neonatal Medicine, 2018, 1-7.
[56] SONIA M, GERMAN C S, VICENTE S, et al. The role of mycotoxins in the human exposome: Application of mycotoxin biomarkers in exposome-health studies[J]. Food and Chemical Toxicology, 2018, 121: 504-518.
[57] PUNTSCHER H, HANKELE S, TILLMANN K, et al. First insights into Alternaria multi-toxin in vivo metabolism[J].Toxicology letters, 2019, 301: 168-178.
[58] SOLFRIZZO M. Recent advances on Alternaria mycotoxins[J].Current Opinion on Food Science, 2017, 17: 57-61.
[59] HÖVELMANN Y, HICKERT S, CRAMER B. et al.Determination of exposure to the Alternaria mycotoxin tenuazonic acid and its isomer allo-tenuazonic acid in a German population by stable isotope dilution HPLC-MS3[J]. Journal of Agriculture Food Chemical, 2016, 64: 6641-6647.
[60] ARCELLA D, ESKOLA M, J. RUIZ A G. Dietary exposure assessment to Alternaria toxins in the European population[J].EFSA Journal, 2016, 14(12): 04654.
[61] SERRANO A B, CAPRIOTTI A L, CAVALIERE C, et al.Development of a rapid LC-MS/MS method for the determination of emerging Fusarium mycotoxins enniatins and beauvericin in human biological fluids[J]. Toxins, 2015, 7(9): 3554-3571.
[62] KIRSTEN A B, NATHALIE L, SYLVIE R, et al. A strategy to validate a selection of human effect biomarkers using adverse outcome pathways: proof of concept for phthalates and reproductive effects [J]. 2019, 175: 235-256.
[63] QIAN G S, ROSS R K, YU M C, et al. A follow-up study of urinary markers of aflatoxin exposure and liver cancer risk in Shanghai, People’s Republic of China[J]. Cancer Epidemiology,Biomarkers & Prevention, 1994, 3(1): 3-10.
[64] 王玉娇, 聂继云, 闫震, 等. 超高效液相色谱-串联质谱法同时检测干果中16 种真菌毒素[J]. 分析化学, 2017, 45(10):1556-1563.WANG Y J, NIE J Y, YAN Z, et al. Simultaneous determination of 16 mycotoxins in dried fruit by ultra-high performance liquid chromatography-tandem mass spectrometry[J]. Analytical chemistry, 2017, 45(10): 1556-1563.
[65] 中华人民共和国卫生和计划生育委员会,国家食品药品监督管理总局. 食品安全国家标准 食品中真菌毒素限量:GB2761—2017[S]. 北京: 中国标准出版社.Nation Health Commission of the People's Republic of China,China Food and Drug Administration. Limits of mycotoxins in food under national food safety standards: GB2761—2017[S].Beijing: Standards Press of China.
Research Status of Embryonic Developmental Toxicity and Biological Monitoring of Exposure to Traditional and Emerging Mycotoxins during Pregnancy