冲泡方式对米糊冲泡品质影响的研究进展

傅宝尚,胡雪微,祁立波✉,姜鹏飞,尚 珊

(大连工业大学 食品学院,国家海洋食品工程技术研究中心,辽宁 大连 116000)

摘 要:即食米糊是一类由谷物经机械粉碎和水煮糊化后,所形成的具有一定粘度和稠度的胶体溶液,因其速溶供能、口感浓香、营养丰富的功能特性,能够迅速适应当今快节奏的生活。冲调水温、冲调水量会对糊化后谷物米糊的水溶性指数和糊化度产生影响,冲调粒度和改良剂处理会影响米糊的糊化粘度和溶解润滑度,根据米糊原料的糊化特性及溶解性能选用适宜的冲泡方式参数可有效改善米糊实际冲泡饮用时的速溶度、稳定性及口感。综述四种冲泡方式(冲调水温、冲调水量、冲调粒度、改良剂处理)对谷物米糊的流变学、质构、感官品质的影响,以期为米糊的实际推广应用提供一些参考。

关键词:米糊;淀粉糊化;冲泡方式;冲调性;冲调温度

预包装冲调谷物制品是以谷物或其他淀粉质类原料为主,经熟制和/或干燥等工艺加工制成可直接冲泡饮食的食品。如麦片、芝麻糊、莲子羮、藕粉、杂豆糊、粥等。我国制定了预包装冲调谷物制品的法规标准,对其原料成分和感官要求作出了具体的规定以保证其营养和质量安全[1-2]。国外多个国家对特殊的婴幼儿奶粉类冲调制品也制定了法规标准[3-6]

理想的预包装冲调谷物制品冲调后色泽均匀、质构细腻、无分层结块[7],但现阶段市面上各类冲调谷物制品普遍存在营养不均衡、冲调性差、结块率高、速溶性差、不稳定等缺陷[8-9]。为改良其冲泡品质,国内外学者从米粉配方、预处理工艺上进行了研究,ROMAN L等[10]和FU Z Q等[11]发现经过挤压膨化处理后的玉米面粉糊类冲调谷物制品扫描电镜显示淀粉颗粒大且结构疏松,糊化更完全,消化吸收率更高;乐梨庆等[12]改良代餐米粉配方后经主成分分析模糊数学感官评定M值显著增大至77,有效改善了米糊品质。因冲泡方式对不同原料类型的米糊类冲调制品的品质影响的不确定性导致了米糊结块分层问题,已成为米糊食用品质提升的一大瓶颈[13-14]。为改良米糊品质,针对冲泡方式对不同原料类型的米糊品质影响机理进行整合分析显得尤为重要。鉴于此,本文拟对冲调温度、冲调水量、冲调粒度、不同改良剂处理后冲泡4类冲泡方式对冲泡品质的影响研究进展进行综述,以期可为米糊类冲调谷物制品的冲泡实际应用提供借鉴。

1 冲调温度影响

1.1 冲调温度影响机理

对于冲调水温对米糊冲调性的影响机理MEMORIE M和PAMELA D[15]解释了是由于温度导致奶粉类米糊淀粉糊化改变米糊内部结构从而影响其冲泡品质也有文献含有淀粉类原料的米粉糊化是指其在热水均匀受热中发生不可逆的溶胀,淀粉内部结晶区被破坏,使其降解糊化,形成浓稠状米糊,粘稠度增加[16-19]

温度对米糊品质的影响过程和原理已有学者进行了研究。FU Z Q等[20]将经过高温挤压处理后的玉米淀粉糊化后的米糊扫描电镜后结果显示其内部结构淀粉剧烈崩解,表明米糊糊化降解更彻底。SUN X Y等[21]使用碱法测定荞麦淀粉糊化度,结果表明随着温度升高,水含量降低,淀粉糊化更完全,米糊内部结构更连续均匀。李云龙等[22]深入研究了不同糊化度的荞麦粉理化性质,结果表明高糊化度米粉内部淀粉分子无定形区被快速分解,还原糖含量增加,淀粉消化率提高。还有报道[23]研究了高温挤压后的高粱粉消化特性,认为温度越高其淀粉消化速率越高。

还有一部分学者研究了淀粉类米糊水溶性指数WSI值,ANDERSON R A等[24]解释了WSI是指淀粉吸水溶胀能力,可代表其降解程度。WANI A A等[25]和WANG J J等[26]都研究了糯米淀粉质原料米糊糊化后的理化特性,结果表明一定范围内温度越高,水溶性指数WSI值越高,米糊溶解度和组织状态就越好,淀粉消化率越高。

但是冲调温度过高,会造成淀粉糊化后的米糊结块率升高,分层结块现象更严重[7]。ZAFAR U等[27]解释了粉末溶解过程中结块是指粉末颗粒的聚集,转化为块状物质,当压力很大时块状物质会很容易地破裂,变成不可逆的颗粒。淀粉类原料以及奶粉类原料米粉溶解糊化过程中的结块和潮解是导致其功能性和低质量的重要原因。

根据以上文献研究结果可以看出,淀粉类原料以及奶粉类原料的米糊冲调温度通过改变其内部淀粉结构影响其溶解性或糊化度来影响米糊品质。

1.2 冲调温度影响研究进展

温度过高或过低都会劣变米糊的冲泡品质,确定冲调温度通过何种因素来影响不同类型米糊的冲泡品质至关重要。陈晨等[28]对不同冲调温度的食用菌粉进行了感官评定,结果显示水温在70~80 ℃时不破坏活菌含量且菌粉溶解结块少,粘稠度适中;高霄[29]研究了冲调温度对纳豆粉感官影响,结果也显示 78 ℃热水冲调,搅拌均匀30 s的纳豆粉不影响活菌含量,溶解性好,气味浓郁,口感最好;ABRAHAM J等[30]和DIRLER J等[31]研究了温度对咖啡类冲泡热饮的品质影响中提到了水温受咖啡豆粉浓度影响决定其冲泡品质,最后通过评估确定了咖啡类冲调制品在 63~71 ℃热水冲泡时既不会有烫伤危险其冲泡品质又最受大众偏爱,马丽媛等[32]测定了不同冲泡温度下的杂粮小米粉发现水温受米粉中淀粉糊化度影响,淀粉糊化不完全容易分层,糊化过度易结块,70 ℃水温冲调的杂粮米糊结块率最低,冲调品质最好。

适度的冲调水温可使米粉迅速均匀溶解,且不易产生凝块,便于食用。综合上述文献研究进展可知适宜冲调温度的选择受米糊原料特性影响,含有菌类的米粉会因冲调水温影响活菌数量及溶解性;含有豆类的米粉会因冲泡温度影响豆粉浓度及感官口感;含有淀粉的米粉会因冲泡水温影响淀粉糊化度和结块率。不同原料的米糊应根据其原料特性在水温安全的前提下选择合适的冲调水温。

2 冲调水量影响

2.1 冲调水量影响机理

JUNG K J等[33]解释了加水量对谷物类原料米粉的糊化程度具有显著影响,糊化实际上就是淀粉晶体在自由水分子作用下氢键的断裂,冲调水量对此类米糊品质的影响机理是由于水量和糊化间的关联:水分子和淀粉分子的羟基发生水合作用,随水分子渗入淀粉颗粒的内部,断裂淀粉中连接结晶体的氢键被淀粉酶水解的能力增加,糊化度逐步升高。另一方面水分子的流动性会影响淀粉分子的结晶重排和交联缠绕,改变米糊糊化特性来影响米糊口感、品质。还有一部分学者认为水分含量影响淀粉颗粒与水分子之间接触的概率,进而改变米糊粉体分散性和结块率影响其冲泡品质[34-39]

母应春等[40]探究了冲调水量对大米原料的粥类米糊的感官影响,结果表示加水量过低会导致糊化过程中水分迁移困难,米粉吸收有限水分,糊化度较低使其凝胶糊状结构松散,冲泡过程未糊化的淀粉颗粒溶出,造成结块分层现象。乔聚林等[41]在研究以胡萝卜粉为原料的果蔬粉冲调工艺时候也发现随着加水量增加,米糊淀粉会充分吸水溶胀,糊化更均匀,形成较为紧密的糊状凝胶结构来有效改善了其冲泡品质。张静瑶[42]等对大米、淀粉复合原料的米糊进行品质评价后也发现冲调水量和米糊的糊化度相关性显著,冲调水量达复合米粉两倍时糊化最均匀。

还有一些学者研究了冲调水量对米糊分散性指数影响。米糊分散性是指米粉在水或其他均匀液体介质中,能均匀地分散为细小粒子悬浮于分散介质中而不沉淀的性能[43-44]。韩玲玉[45]研究了水量对谷物原料米糊的感官品质影响发现随加水量增加至60 mL,降低了颗粒与颗粒接触的几率,使得颗粒与水充分接触,米糊分散性指数显著上升到最高值76%,组织状态完好。JAM PIER等[46]研究了大豆原料类米糊的分散化学性质,结果也表明随着水量增加,豆浆糊均匀分散开来,色泽逐渐明亮。

但是冲调水量过于大时,会降低米糊的冲调稳定性。董宏浩[47]等测定了水量对大米原料类米糊的质构品质,结果显示水分含量增加至60 mL以上时,颗粒与水的溶解已达到饱和状态,水与淀粉的比例发生失衡,米糊凝胶相中游离水过多,淀粉分子交联缠绕和有序聚合的机率减少,结晶体崩裂,导致产品的黏度过低产品过稀,短时间放置就会出现明显的分层现象。曹家宝[48]对婴幼儿类复配米糊作出感官评价后也发现水量过多造成水粉比例失调,淀粉糊化后形成的凝胶黏度较低,糊体几乎无稠度,出现明显的分层,且过多的水冲淡了营养米粉原有的气味,香味寡淡。

以上研究结果主要针对不同原料类型的米糊冲调水量影响展开分析,可以明确大米、谷物、大豆、胡萝卜果蔬、复合米类型原料的米糊冲调水量都是通过调节水分子作用调节淀粉颗粒间以及水分子与淀粉颗粒间的交联作用,来影响米糊的糊化度和分散稳定性。

2.2 冲调水量影响研究进展

冲泡米糊的水量过少会导致米糊结块,过多导致其分层。明确冲调水量对不同原料米糊的影响因素可以为米糊加水量的选择奠定基础。CHEN D等[49]和CHEN Y等[50]测定了淀粉类原料米糊的糊化性能及马铃薯类原料米糊糊状凝胶的流变性质发现水量20%时米糊糊化最均匀,粘弹性调好。孟晶岩等[51]研究了青稞谷物原料类的米糊冲调工艺发现冲调水量比例为20%时米糊分散指数佳,溶液稳定,色泽鲜亮;韩玲玉[45]也研究了谷物原料类米糊的消化特性,结果显示冲调水量比例为16%时其分散均匀,结块率低,谷物香味浓厚。

适宜的冲调水量可充分溶解米糊,颜色均一,无分层结块现象。综合上述文献研究进展可知冲调水量的选择影响了淀粉类、大米、青稞谷物类米糊的糊化度和分散结块率。不同原料米糊应根据不同原料的糊化特性和分散性能选择合适的冲调水量。

3 冲调粒度的影响

3.1 冲调粒度影响机理

LAPČKOV B等[52]分析了不同粒径大米原料类米糊的水扩散系数解释了米糊粉体粗细度对其冲泡品质影响机理是通过粒度改变米糊溶解润湿性来影响其品质。Kalivoda J R等[53]对玉米、小麦谷物类米粉的粒度分析方法进行对比后发现加入筛子搅拌器和分散剂可促进颗粒间的流动性能,给各类谷物类米糊粒度方法测定提供了参考依据。已有文献研究[54-56]发现甘薯小麦类、胡萝卜南瓜果蔬类、豌豆面粉类米粉的糊化时加水量与粒度间的关联:米粉粒径间间隙在接触水瞬间会与水粘连,形成一层膜,改变米粉颗粒比表面积,增加或减少与水的实际接触面,从而变动米糊润湿性。随米粉粒度减小,其流动性和稳定性降低,溶胀能力,吸油能力增加。

还有文献研究结果说明米粉粒度通过改变米糊加水后的分散性来影响其品质。王丽爽等[57]解释了分散性是指米糊粉体在水或其他均匀液体介质中,能分散为细小粒子悬浮于分散介质中而不沉淀的性能。挤压预处理后米粉形成蜂窝结构,其内部结构因粒度大小不同可能孔隙紧密,迅速润湿而溶解不完全,分散性差;可能结构疏松,与水接触面大,分散性好[45]

BASSI D等[58]研究了小麦谷物类米糊的理化特性,结果表明米粉粒度越细,比表面积和孔隙百分率越大,其在水中可更好的溶解分散。SHARIFI S等[59]测定了不同粒度的玉米粉谷物类米糊的溶解性质,结果表明随着米粉粒度减小,其比表面积增大,表面能增加,空隙率增加,水分子和淀粉分子游离羟基的结合增多,破损淀粉含量上升使其更快的吸收水,米糊润湿分散性能更佳。易建华等[60]研究不同粒径黑米谷物类米糊的理化性质,结果表明随着粒径的减少,粉体与水的接触面积逐渐增加,溶液的孔隙百分率随着粒径的减小也逐渐增加,更有利于水溶性成分的溶解,米糊溶解性随之增大。还有一些学者的研究也证实了大米、绿豆谷物类米糊的溶解性与粉体粒度在水中的溶解能力正相关,在一定范围内粒度越细,粉体在水中溶解分散性能越高,溶液越稳定[61-62]

但是生产实践中粒度过细的大米谷物类原料米粉易与水接触糊化,而先接触到水的米粉会迅速糊化变成糊状包覆在粉团外,阻碍了内部米粉与水的接触,容易发生结块[63]。于小青[64]研究谷物类米糊的性质后也发现米粉粒度过小,易引起结块,而且会使米糊看上去比较粗糙,且色泽暗淡,影响口感。

综合上述文献分析研究可以验证,大米、玉米、小麦、豆类、果蔬类米糊粉体粒度主要是通过米粉之间间隙与水接触比表面积改变米糊溶液孔隙率来影响其润湿分散性。

3.2 冲调粒度影响研究进展

米粉粒度太粗会导致米糊溶液溶解不完全,分散不均匀,太细容易引起结块。确定合适大小的米粉粒度可有效改良米糊冲泡品质。Ahmed J[65]研究测定了藜麦谷物类米糊的流变结构特性,发现米粉粒度尺寸显著影响此类米糊的粘弹性,粒度处于100目的藜麦谷物类米糊的流动性好,溶解性好,适合冲泡;夏书磊[66]研究了稻谷、玉米、小麦谷物类米糊的糊化粘度特性也发现了粉体粒度对此类米糊的峰值粘度、最终粘度影响显著,米粉粒度处于 80目时冲泡米粉后会形成均一稳定、有粘性,色泽鲜亮的糊状溶液。胡毓元[7]等研究了婴幼儿麦胚谷物类米糊的冲调性说明了粉体粒度明显影响了此类米糊的DSI(溶解度指数)和结块率,当粉体粒径为80~100目时,米糊冲调溶解性好,无结块现象,分散均匀。CHOI S等[66]研究测定了黑米谷物类米糊的感官性质发现米粉颗粒碾磨度显著影响米糊抗氧化活性,最终结果显示粉体粒径为80~100目时,获得的冲调粉产品口感好,功能流失少,冲调性能好。

适合的米糊粒度大小可均匀彻底的溶解米粉,不结块,色泽鲜亮,口感细腻。综合上述文献研究进展可知冲调粒度的选择影响了稻谷、玉米、小麦、黑米、藜麦谷物类米糊的糊化粘度、粘弹性、溶解稳定性。谷物类米糊应根据其糊化特性和溶解性能选择合适的冲调粒度。

4 不同改良剂处理的影响

4.1 不同改良剂影响机理

适当的添加分散介质可有效的优化谷物早餐粉的冲调性。白砂糖是一种具有良好助溶性的甜味剂,可以改善冲调粉的溶解性,降低黏性。试验表明,添加一定量的稳定剂,抗性淀粉含量的增加[67],有利于保持良好的产品形状,防止淀粉老化。冲调时,稳定剂有利于均匀小米类米糊溶液的形成[68]

适当地添加蔗糖、葡萄糖类糖类物质可以通过影响糊化溶液的表观粘度和糊化浓度来提升糯米淀粉类米糊透明度和溶解稳定性,改善其冲调品质[69-70]。蔗糖和葡萄糖作为甜味剂添加到玉米淀粉类米糊中增加了其吸水率,降低了米糊浑浊度[71]。米糊冲调前也可加入一定量的载体,如玉米油、麦芽糊精及一些稳定剂等,以提高分散性、润湿性和稳定性,从而形成一种稳定的乳浊液。在提高分散性和润湿性方面,主要是添加剂麦芽糊精、玉米油等。

综合上述文献分析研究可以验证,淀粉、小米谷物类米糊类冲调谷物制品改良剂处理主要是通过加入一些添加剂改变米糊淀粉含量从而改变其黏度、分散性、润湿稳定性。

4.2 改良剂影响研究进展

含量过多或者不适宜的改良剂处理会导致米糊类冲调谷物制品抗性淀粉含量过多从而使得粉体粘性过大,溶解分散不均匀,口感不佳。确定合适及适宜含量的改良剂可有效改良米糊类冲调谷物制品冲泡品质。已有研究证明了不同米糊的适宜改良剂处理。李检等[17]通过分析蓝莓果蔬类谷物米糊的感官评分说明了麦芽糊精可抑制糊化米糊中的结晶析出,最终结果显示蔗糖添加量15%,麦芽糊精添加量10%时此类米糊甜度适宜,速溶效果佳,冲调口感最好;东方等[76]对粳米谷物类米糊的感官评分进行分析也发现适量的蔗糖可增加甜度、麦芽糊精可改善米糊的溶解润滑度,当蔗糖添加量为10%,麦芽糊精添加量为15%时,梗米谷物营养米糊粘度最佳,口感细腻,溶解性能稳定。胡毓元[7]测定了麦胚谷物类米糊的 DSI(溶解度指数)和结块率发现蔗糖可以作为助溶剂提升米糊DSI,减少结块。当蔗糖浓度为10%时,麦胚谷物类米糊润湿溶解性、分散稳定性最好。王乜田[77]等研究了紫薯果蔬类米糊的冲调性能发现添加白砂糖可以减小颗粒之间的附着面积,减小淀粉颗粒分散的阻力,降低结块率;当白砂糖添加量达到20%时,此类米糊感官口感、冲调分散性能最佳。徐晨冉等[79]分析了复合谷物类米糊的冲调稳定系数R值发现黄原胶具有优良的扩散性、浸润性和乳化性,可以改善此类米糊的分散性和水溶性。当黄原胶添加浓度在0.4%时米糊稳定性好,谷物香味浓厚且在冲食过程中几乎无结块现象。

改良剂的合理添加可通过提高米糊溶解度,使其更加均匀分散,综合上述文献研究进展可知白砂糖、蔗糖、麦芽糊精、黄原胶类改良剂的选用会改善梗米、蓝莓果蔬谷物、麦胚谷物、紫薯果蔬、复合谷物类米糊的溶解度润滑度和分散稳定下;此类米糊应根据其溶解特性和原料特性选用合理适量的改良剂。

5 结论

不同原料来源的米糊类冲调谷物制品的冲泡溶解性、糊化特性、分散性、冲融稳定性受冲调水温、冲调水量、冲调粒度、不同改良剂处理影响。综合了各类米糊影响因子研究进展可知含有淀粉的米质谷物类米糊研究最为普遍,冲调水温、水量通过改善米糊内部淀粉结构,与水溶剂结合速率的快慢来影响米糊糊化程度及其溶解分散性;粉体粒度影响米糊溶液糊化粘度,改良剂处理则在溶解润滑度和口感上影响米糊冲调性能。因此在米糊冲泡实际应用中,需以米糊原料的淀粉糊化特性、溶解性能为依据选用适宜的冲泡方式参数。米糊冲调谷物制品原料来源丰富,研究冲泡方式对不同品种的米糊冲泡品质的影响,使得米糊达到速溶不结块、均匀分散,粘度口感适宜的状态是今后研究的重点方向之一。另外,为了进一步全面严谨的提供米糊制品的冲泡参数指导,除淀粉类原料外,果蔬类、豆类、菌类米糊的冲泡过程中的影响因子及其机理需要更广泛的研究进行论述揭示。

参考文献:

[1]余晓琴, 成长玉. 方便食品类标准使用和检验解读[N]. 中国市场监管报, 2021-04-01(8).YU X Q, CHANG Y Y. Interpretation of the use and inspection of convenience food stand-ards[N]. China Market Supervision News, 2021-04-01 (8).

[2]国家食品药品监督管理总局. 食品安全国家标准冲调谷物制品: GB 19640—2016[S].National Food Safety Standard for Prepared Cereal Products:GB 19640—2016[S].

[3]Standard for processed cerealbased foods for infants and young children: Codex Alimenta-rius Commission: codex stan 74-1981[S/OL][2018-05-01].

[4]Food for infants:Food Standards Australia New Zealand[S/OL][2018-05-01].

[5]Standard for processed cerealbased foods for infants and young children: Codex Alimentarius Commission: codex stan 74-1981[S/OL][2018-05-01].

[6]Food standard for infants and young children: Japan Infant Food Association: [S/OL][2018-05-01].

[7]胡毓元, 杜蘅, 李婕妤, 等. 婴幼儿麦胚米粉配方及其冲调性的研究[J]. 食品工业, 2018, 39(8): 44-47.HU Y Y, DU H, LI J Y, et al. Study on the formula and preparation of wheat germ rice noodles for infants and young children[J]. Food Industry, 2018, 39(8): 44-47.

[8]MEMORIE M, GOSA, PAMELA D. Effect of time and temperature on thickened infant formula[J]. Nutrition in Clinical Practice, 2017, 32(2).

[9]何兴芬, 杨富民, 张明霞, 等. 藜麦南瓜复合粉配方的优化[J]. 现代食品科技, 2019, 35(4): 209-216.HE X F, YANG F, ZHANG M X, et al. Optimization of quinoa and pumpkin compound powder formula[J]. Modern Food Science and Technology, 2019, 35(4): 209-216.

[10]ROMAN L, MARTINEZ M M, ROSELL C M, et al. Changes in physicochemical propertiesand in vitro starch digestion of native and extruded maize flours subjected to branching enzyme and maltogenic α-amylase treatment[J]. International Journal of Biological Macromolecules, 2017,101: 326-333.

[11]FU Z, CHE L, LI D, et al. Effect of partially gelatinized corn starch on the rheological properties of wheat dough[J]. LWT -Food Science and Technology, 2016, 66: 324-331.

[12]乐梨庆, 万燕, 向达兵, 等. 藜麦奇亚籽冲调粉的研制及工艺优化[J]. 食品工业, 2020, 41(8): 81-85.LE L Q,WAN Y,XIANG D B,et al. Preparation and process optimization of quinoa chia seed powder[J]. Food Industry,2020, 41(8): 81-85.

[13]FREDERIC R,HEIKE P S,STEFAN P. Dietary fiber in extruded cereals-Limination and opportunities[J]. Trends in Food Science& Technology, 2012(28): 23-32.

[14]张丽颖. 杂粮代餐粉冲调性质的研究[D]. 沉阳农业大学,2017.ZhANG L Y. Study on the preparation properties of mealreplacement powder from cereals[D]. Shenyang Agricultural University, 2017.

[15]MEMORIE M G, PAMELA D. Effect of time and temperature on thickened infant fo rmula[J]. Nutrition in Clinical Practice, 2017,32(2).

[16]WANG Y Y, HU B, ZHAN J L, et al. Effects of starchy seed crystals on the retrogradation of rice starch[J]. Food Chemistry,2020, 318: 0308-8146.

[17]李检, 王浩, 刘璇, 等. 蓝莓速溶米糊的工艺与配方研究[J].食品研究与开发, 2018, 39(19): 93-98.LI J, WANG H, LIU X, et al. Research on the technology and formula of blueberry instant rice cereal[J]. Food Research and Development, 2018, 39(19): 93-98.

[18]XU D P. Effect of high steam pressure cooking on eating quality and preliminary study of the mechanism[D]. Wuxi: Jiangnan University, 2019.

[19]XU E B, WU Z Z, LONG J, et al. Effect of thermostable a-amylase addition on the physicochemical properties, free/bound phenolics and antioxidant capacities of extruded hulled and whole rice[J]. Food and Bioprocess Technology, 2015, 8:1958-1973.

[20]FU Z Q, CHE L M, LI D, et al. Effect of partially gelatinized corn starch on the rheological properties of wheat dough[J].LWT-Food Science and Technology, 2016, 66: 324-331.

[21]SUN X Y, CHEN YU, FU X M, et al. Extruded whole buckwheat noodles: effects of processing variables on the degree of strach gelatinization, changes of nutritional components,cooking characteristics and in vitro starch digestibility[J]. Food& Function, 2019, 10, 6362-6373.

[22]李云龙, 董桂梅, 董吉林, 等. 不同糊化度苦荞粉理化性质和体外消化性的研究[J]. 中国粮油学报, 2021, 36(3): 21-27.LI Y L, DONG G M, DONG J L, et al. Studies on the physical and chemical properties and in vitro digestibility of tartary buckwheat flour with different gelatinization degrees[J]. Journal of the Chinese Cereals and Oils Association, 2021, 36(3): 21-27.

[23]MAHASUKHONTHACHAT K, SOPADE P A, GIDLEY M J.Kinetics of starch digestion and functional properties of twinscrew extruded sorghum[J]. Journal of Cereal Science, 2010,51(3): 392-401.

[24]ANDERSON R A, CONWAY H F, PEPLINSKI A J.Gelatinization of corn grits by roll cooking, extrusion cooking and steaming[J]. Starch Stärke, 1970, 22(4): 130-135.

[25]WANI A A, SINGH P, SHAH M A, et al. Rice starch diversity:effects on structural, morpho-logical, thermal, and physicochemical properties—a review[J]. Comprehensive Reviews in Food Science and Food Safety, 2012, 11(5): 417-436.

[26]WANG J J, LI M F, WANG C, et al. Effect of extrusion processing and addition of purple sweet potatoes on the structural properties and in vitro digestibility of extruded rice[J]. Food &func-tion, 2020.

[27]ZAFAR U, VIVACQUA V, CALVERT G, et al. A review of bulk powder caking[J]. Powder Technology, 2017, 313: 389-401.

[28]陈晨, 张洪, 侯文博, 等. 挤压膨化食用菌粉制备及冲调工艺研究[J]. 中国果菜, 2018, 38(9): 10-13+17.CHEN C, ZHANG H, HOU W B, et al. Study on the preparation and brewing process of extruded edible fungus powder[J].Chinese Fruits and Vegetables, 2018, 38(9): 10-13+17.

[29]高霄. 不同冲调温度对纳豆粉感官及活菌数的影响[J]. 食品安全导刊, 2020(21): 113-115+117.GAO X. The effect of different brewing temperatures on the sensory and viable count of natto powder[J]. Food Safety Guide,2020(21): 113-115+117.

[30]ABRAHAM J, DILLER K. A review of hot beverage temperatures-satisfying consumer preference and safety[J].Journal of food science, 2019, 84(8).

[31]DIRLER J, WINKLER G, LACHENMEIER D W. What temperature of coffee exceeds the pain threshold? pilot study of a sensory analysis method as basis for cancer risk assessment[J].Foods (Basel, Switzerland), 2018, 7(6).

[32]马丽媛, 李杨, 尚尔坤, 等. 酶解杂粮小米粉的冲调性研究[J]. 食品研究与开发, 2021, 42(2): 26-30.MA L Y, LI Y, SHANG E K, et al. Study on the preparation of enzymatically hydrolyzed cereals and millet flour[J]. Food Research and Development, 2021, 42(2): 26-30.

[33]JUNG K J, LEE H, LEER S U, et al. Etrogradation of heatgelatinized rice grain in sealed packaging: investigation of moisture relocation[J]. Food Sci Technol, 2017, 37.

[34]CURTI E, CARINI E, VITTADINI E. Staling and water dynamics in high-gluten bread[J]. European Food Research & Technology,2016, 243(7): 1-10.

[35]陈小聪, 肖满凤, 林莹. 水分对淀粉糊化度及鲜湿米粉品质的影响[J]. 粮食与油脂, 2018, 31(3): 41-44.CHEN X C, XIAO M F, LIN Y. The effect of moisture on starch gelatinization and the quality of fresh wet rice noodles[J]. Grain and Oils, 2018, 31(3): 41-44.

[36]LI M, MA M, ZHU K X, et al. Delineating the physico-chemical,structural, and water Characteristic changes during the deterioration of fresh noodles[J]. Food Chemistry, 2017, 216: 374-381.

[37]ZHENG Y Y, WANG Z H, WANG Z Y, et al. Changes in shelf life and quality of fresh hull-less barley noodles during storage[J].Cereal Chemistry, 2019, 96(6): 1148-1158.

[38]DING H H, LI B, BOIARKINA I, et al. Effects of morphology on the bulk density of instant whole milk powder[J]. Foods,2020, 9(8).

[39]LAN H, HOOVER R, JAYAKODY L, et al. Impact of annealing on the molecular structure and physic-ochemical properties of normal, waxy and high amylose bread wheat starches[J]. Food Chemistry, 2008, 111(3): 663-675.

[40]母应春, 姜丽, 母雨, 等. 方便糕粑粥制作工艺优化[J]. 食品科技, 2019, 44(6): 170-175.MU Y C, JIANG L, MU Y, et al. Optimization of the production process of convenient cakes and porridge[J]. Food Science and Technology, 2019, 44(6): 170-175.

[41]乔聚林, 刘学梅. 挤压膨化胡萝卜粉冲调工艺的研究[J]. 食品工业, 2017, 38(1): 6-9.QIAO J L, LIU X M. Study on the preparation process of extruded carrot powder[J]. Food Industry, 2017, 38(1): 6-9.

[42]张静瑶, 谭稳根, 范郁冰, 等. 基于传统健脾食疗名方的复合米粉研制及品质评价[J]. 食品与机械, 2020, 36(8): 166-170+177.ZHANG J Y, TAN W G, FAN Y B, et al. Development and quality evaluation of compound rice noodles based on traditional spleen-invigorating diet recipes[J]. Food and Machinery, 2020,36(8): 166-170+177.

[43]ABEBE W, COLLAR C, RONDA F. Impact of variety type and particle size distribution on starch enzymatic hydrolysis and functional properties of tef flours[J]. Carbohydrate Polymers,2015, 115.

[44]TATSUYA O, KOKI T, ASUKA I, et al. Enhanced water dispersibility and permeability through a Caco-2 cell monolayer of β-cryptoxanthin extracted from kumquats by complexation with casein[J]. Food Chemistry, 2021, 360.

[45]韩玲玉. 多谷物共挤压加工对其物化及消化特性影响研究[D]. 东北农业大学, 2019.HAN L Y. Research on the effect of multi-grain co-extrusion processing on its physicoch-emical and digestive characteristics[D]. Northeast Agricultural University, 2019.

[46]CRUZ-TIRADO J P, MARTINS J P, OLMOS B D, et al. Impact of glass transition on chemical properties, caking and flowability of soymilk powder during storage[J]. Powder Technology, 2021,386.

[47]董宏浩, 徐丽, 全珂, 等. 鲜湿米粉品质劣变机理及保鲜技术研究进展[J]. 中国粮油学报, 2021, 36(3): 161-168.DONG H H, XU L, QUAN K, et al. Research progress on the quality deterioration mechanism and preservation technology of fresh wet rice noodles[J]. Journal of the Chinese Cereals and Oils Association, 2021, 36(3): 161-168.

[48]曹家宝. 冲调婴儿复配营养米粉的研制及品质评价[D]. 黑龙江八一农垦大学, 2020.CAO J B. Development and quality evaluation of compound nutritional rice noodles for infants[D]. Heilongjiang Bayi Agricultural Reclamation University, 2020.

[49]CHEN D, FANG F, FEDERICI E, et al. microstructure and phase behavior of potato starch-pro-tein fibril mixed gel[J].Carbohydrate Polymers, 2020, 239.

[50]CHEN Y, DAI G F, GAO Q Y. Preparation and properties of granular cold-water-soluble porous starch[J]. International Journal of Biological Macromolecules, 2020, 144.

[51]孟晶岩, 张倩芳, 李敏, 等. 挤压膨化青稞冲调粉加工工艺研究[J]. 粮食与油脂, 2021, 34(1): 75-78.MENG J Y, ZHANG Q F, LI M, et al. Research on the processing technology of extruded highland barley powder[J].Grain and Oils, 2021, 34(1): 75-78.

[52]LAPČKOV B, LAPČÍK L, VALENTA L, et al. Effect of the rice flour particle size and variety type on water holding capacity and water diffusivity in aqueous dispersions[J]. LWT, 2021, 142.

[53]KALIVODA J R, JONES C K, STARK C R. Impact of varying analytical methodologies on grain particle size determination[J].Journal of animal science, 2017, 95(1).

[54]LYU Y, BI J F, CHEN Q Q, et al. Bioaccessibility of carotenoids and antioxidant capacity of seed-used pumpkin byproducts powders as affected by particle size and corn oil during in vitro digestion process[J]. Food Chemistry, 2021, 343.

[55]KORESE J K, CHIKPAH S K, HENSEL O, et al. Effect of orange-fleshed sweet potato flour particle size and degree of wheat flour substitution on physical, nutritional, textural and sensory properties of cookies[J]. European Food Research and Technology, 2021: 1-17.

[56]BALA M, HANDA S, MRIDULA D, et al. Physicochemical,functional and rheological proper-ties of grass pea (Lathyrus sativus L.) flour as influenced by particle size[J]. Heliyon, 2020,6(11): e05471.

[57]王丽爽, 肖志刚, 郭世龙, 等. 挤压膨化联合蒸煮技术制备富硒杂粮粉[J]. 食品工业, 2019, 40(11): 129-133.WANG L S, XIAO Z G, GUO S L, et al. Preparation of seleniumenriched cereal powder by ex-trusion and puffing combined cooking technology[J]. Food Industry, 2019, 40(11): 129-133.

[58]BASSI D, KAUR K, SINGH T P, et al. Quality attributes and Chapatti making property of biofortified wheat as influenced by particle size[J]. Journal of Food Science and Technology, 2020:1-9.

[59]SHARIFI S, MAJZOOBI M, FARAHNAKY A. Effects of particle size and moisture content of maize grits on physical properties of expanded snacks[J]. Journal of Texture Studies,2020, 52(1): 110-123.

[60]易建华, 张志婕, 朱振宝, 等. 不同粒径对黑米粉理化性质的影响[J]. 陕西科技大学学报, 2021, 39(1): 39-44.YI J H, ZHANG Z J, ZHU Z B, et al. The effect of different particle sizes on the physical and chemical properties of black rice flour[J]. Journal of Shaanxi University of Science and Technology, 2021, 39(1): 39-44.

[61]CAOJ B, LU B X, ZHANG D J, et al. Optimization of the preparation process of mung bean puffed infant rice cereal and evaluation of the structure and digestion characteristics of starch[J]. International Journal of Food Engineering, 2020, 16(8):20200025-1-20200025-13.

[62]HAMIDREZA B, HASSAN H, VAHAB G, et al. Numerical solution of particle size distribution equation: Rapid expansion of supercritical solution (RESS) process[J]. Particuology, 2021,57: 201-213.

[63]JANNASCH A, WANG Y J. Development of a limited-water soaking method on the fortification of rice with calcium and iron by parboiling[J]. Journal of Cereal Science, 2020, 94: 103014.

[64]于小青, 戴榕杉, 唐晓珍. 方便粥粉配方及其冲调性的研究[J]. 食品研究与开发, 2017, 38(5): 152-155+207.YU X Q, DAI R S, TANG X Z. Study on the formula and preparation of instant porridge powder[J]. Food Research and Development, 2017, 38(5): 152-155+207.

[65]AHMED J, THOMAS L, ARFAT Y A. Functional, rheological,microstructural and antioxidant properties of quinoa flour in dispersions as influenced by particle size[J]. Food research international, 2019, 116(2): 302-311.

[66]夏书磊. 谷物糊化特性的测定方法与相关性研究[D]. 河南工业大学, 2017.XIA S L. The determination method and correlation research of grain gelatinization charac-teristics[D]. Henan University of Technology, 2017.

[67]CHOI S, SEO H, LEE K, et al. Effect of cultivars and milling degrees on free and bound phenolic profiles and antioxidant activity of black rice[J]. Applied Biological Chemistry, 2018,61(1): 49-60.

[68]DING Y, HUANG J, ZHANG N, et al. Physiochemical properties of rice with contrasting resistant starch content[J]. Journal of Cereal Science, 2019, 89: 102815.

[69]司俊玲, 李红, 李冬青, 等. 小米速溶粉的工艺研究[J]. 食品工业, 2015, 36(12): 56-61.SI J L, LI H, LI D Q, et al. Research on the technology of millet instant powder[J]. Food Industry, 2015, 36(12): 56-61.

[70]TAO X Q, ZHANG Y L, CHEN F, et al. Effects of sucrose on pasting, thermal, rheological and textural properties of native and alcohol-alkali-treated waxy rice starch[J]. International Journal of Biological Macromolecules, 2021, 166.

[71]HEDAYATI S, SHAHIDI F, KOOCHEKI A, et al. Comparing the effects of sucrose and glucose on functional properties of pregelatinized maize starch[J]. International Journal of Biological Macromolecules: Structure, Function and Interactions, 2016,88499-504.

[72]HEDAYATI S, SHAHIDI F, KOOCHEKI A, et al. Functional properties of granular cold-water swelling maize starch: effect of sucrose and glucose[J]. International Journal of Food Science and Technology, 2016, 51(11): 2416-2423.

[73]东方, 王鑫, 李冉, 等. 营养米糊膨化工艺及配方优化[J]. 包装工程, 2020, 41(13): 40-47.DONG F, WANG X, LI R, et al. Puffing process and formula optimization of nutritional rice paste[J]. Packaging Engineering,2020, 41(13): 40-47.

[74]王乜田, 黄琬茹, 雷君, 等. 紫薯代餐粉的研制及其冲调性研究[J]. 现代食品, 2017(22): 103-107+115.WANG J T, HUANG W R, LEI J, et al. Development and preparation of purple potato meal replacement powder[J]. Modern Food, 2017(22): 103-107+115.

[75]徐晨冉, 张云亮, 窦博鑫, 等. 复合谷物超微粉营养品质及冲调稳定性研究[J]. 农产品加工, 2020(19): 1-5+9.XU C R, ZHANG Y L, DOY B X, et al. Study on the nutritional quality and preparation stabili-ty of composite grain superfine powder[J]. Agricultural Products Processing, 2020(19): 1-5+9.

Research Progress on Effect of Brewing Methods on Brewing Quality of Rice Paste

FU Bao-shang, HU Xue-wei, QI Li-bo✉, JIANG Peng-fei, SHANG Shan
(National Engineering Research Center of Seafood, School of Food Science and Technology,Dalian Polytechnic University, Dalian, Liaoning 116000, China)

Abstract: Instant rice paste is a kind of colloidal solution with certain viscosity and consistency formed by mechanical crushing and boiling of grain. Due to its functional characteristics of instant energy supply, strong flavor and rich nutrition, it can quickly adapt to today’s fast-paced life. Water temperature and water quantity can influce water solubility index and gelatinization degree of rice paste after gelatinization. Pasting viscosity and dissolved lubrication degree of rice paste can be affected by punching particle size and modifier treatment. Suitable bubbling parameters based on pasting properties and solubility of rice paste can effectively improve the instant solubility, stability and taste of rice paste. The effects of four brewing methods(water temperature, water volume, particle size and modifier treatment) on the rheology, texture and sensory quality of cereal paste were reviewed. It is expected to provide some reference for the practical application of rice paste.

Key words: rice paste; starch dextrinization; brewing method; brew ability; brewing temperature

中图分类号:TS213.3

文献标识码:A

文章编号:1007-7561(2022)02-0132-08

DOI: 10.16210/j.cnki.1007-7561.2022.02.016

傅宝尚, 胡雪微, 祁立波, 等. 冲泡方式对米糊冲泡品质影响的研究进展[J]. 粮油食品科技, 2022, 30(2): 132-139.

FU B S, HU X W, QI L B, et al. Research progress on effect of brewing methods on brewing quality of rice paste[J]. Science and Technology of Cereals, Oils and Foods, 2022, 30(2): 132-139.

收稿日期:2021-09-05

基金项目:国家重点研发计划项目(2017YFD0401203)

Supported by: National Key Research & Development Program (No.2017YFD0401203)

作者简介:傅宝尚,男,1989年出生,硕士,工程师,研究方向为食品资源开发与综合利用。E-mail: 525811985@qq.com.

通讯作者:祁立波,女,1974年出生,硕士,高级工程师,研究方向为农(水)产品精深加工。E-mail: 905390442@qq.com.