“全谷物食品的营养与健康”特约专栏文章之五
谷物是东方膳食的重要组成部分,与精制谷物相比,全谷物保留了更多麸皮和胚芽,含有丰富的营养成分,特别是膳食纤维、微量营养素和多酚等植物化学物。许多证据表明食用全谷物对平衡膳食,降低Ⅱ型糖尿病、心血管疾病及结直肠癌等慢性疾病有极大改善作用[1]。因此,鼓励以全谷物食品代替精制谷物食品是改善居民膳食营养的重要途径。膳食纤维是全谷物食品中重要的功能性组分,调查显示,膳食中谷物来源的膳食纤维对人体健康作用大于其它来源的膳食纤维,这与其结构差异有关[2]。β-葡聚糖是一种重要的谷物膳食纤维组分,在于胚乳细胞壁中,是由D-葡萄糖单体间经 β-(1→3)和 β-(1→4)糖苷键混合连接的多糖[3],在大麦(2.5%~11.3%)燕麦(2.2%~7.8%)中含量最高,黑麦(1.2%~2.0%)和小麦(0.4%~1.4%)中也含有较少量 β-葡聚糖[4]。
近年来,随着公众对营养健康关注度的提高,全谷物食品消费量不断增加,特别是基于美国FDA和欧盟对β-葡聚糖功效的健康声称,使得富含β-葡聚糖的燕麦大麦等食品的消费量也逐年增加,国内外对谷物β-葡聚糖相关研究深度和广度都有了极大拓展,研究从β-葡聚糖提取分离纯化方法的多样化;食品加工和处理技术对于β-葡聚糖结构和性质的影响;β-葡聚糖与蛋白质、脂质等物质之间相互作用;β-葡聚糖在不同类型食品中的应用以及β-葡聚糖营养健康功效的研究等,为此,本论文针对谷物β-葡聚糖近年研究进展进行了综述。
谷物 β-葡聚糖主要存在于籽粒的亚糊粉层和胚乳细胞壁中,谷物β-葡聚糖的性质及应用主要基于其分子结构特征。提取条件不仅影响β-葡聚糖提取率,也影响其分子结构,因此,近年来大量文献报道了对谷物β-葡聚糖的提取、分离以及纯化方法。综述文献发现[5-6],目前提取谷物 β-葡聚糖主要的方法均源于 Wood等[7]的研究,基本步骤如图1所示。随后,在此基础上研究者分别针对不同谷物原料、前期提取条件、影响得率和纯度的因素等进行了深入的研究(见表1)。目前,用于提取谷物β-葡聚糖的主要原料包括大麦、青稞、燕麦及燕麦麸皮。从大麦及青稞中提取β-葡聚糖提取率较高,而使用燕麦及燕麦麸皮作为原料提取率较低,这与谷物中β-葡聚糖的分布相关。比较不同提取方法,发现不同方法提取β-葡聚糖提取率约在 50%~87%之间,得率约在5%~8.5%之间,酶法提取的提取率相对较高,而微波辅助提取法得率相对较高。此外,Ahmada等[3]报道,酶法提取得到的谷物 β-葡聚糖产品稳定性和功能特性均较好。然而,提取是个复杂的过程,不仅要关注产率,更要关注功能和产品稳定性等;因此,谷物β-葡聚糖的提取,特别是工业化制备方面在技术和产品质量指标稳定性和能耗方面还需要综合考虑。
表1 谷物β-葡聚糖提取部分研究方法
Table 1 The partial research methods of cereal β-glucan extraction
图1 谷物β-葡聚糖常规提取办法
Fig.1 The conventional extraction method of cereal β-glucan
近年来,随着对于谷物 β-葡聚糖健康作用的了解以及对其分子特性研究的不断深入,许多研究者更加关注β-葡聚糖的结构和功能特性与应用前景的关系。杨成峻等[20]综述了燕麦β-葡聚糖结构与物理特性、营养特性以及在肉类食品、烘焙食品和饮料行业食品应用;Izydorczyk[21]综述了大麦β-葡聚糖分子结构、理化特性及其在食品中的应用。食品工业中β-葡聚糖主要包括面制品、乳品、饮料、肉制品和休闲食品等(见表2),近年来,谷物β-葡聚糖的应用研究不断增多,一方面将β-葡聚糖添加在不同的食品中,研究对食品体系组分性质和食品品质的影响;另一方面,基于β-葡聚糖与食品体系中不同分子之间的相互作用,研究β-葡聚糖复合物的功能性质与应用。为此,本论文以β-葡聚糖在面制品中应用为例,概述β-葡聚糖添加对面团特性和食品品质的影响;同时,对β-葡聚糖复合物的研究及应用进行了综述。
表2 谷物β-葡聚糖在食品中的应用
Table 2 The application of cereal β-glucan in food
食物类别 β-葡聚糖来源 食品 应用功能 参考文献燕麦 燕麦和全麦面包 β-葡聚糖分子量和粘度在不同发酵时间的效果评价Gamel T H, 2014[22]大麦、燕麦 大米面团和面包 将葡聚糖添加到面包中研究其流变特性 Perez-Quirce S, 2015[23]燕麦 面条 提高面团的蒸煮产量、粘合力和延展性 Inglett G E, 2005[24]面制品大麦 富含大麦β-葡聚糖的粗麦粉 富含功能性成分的混合粗麦粉 Messia M C, 2018[25]燕麦 橙味饮料 在饮料中用作功能性成分 Liu Nian, 2018[26]燕麦 藜麦乳 良好的乳化稳定剂 Huang K, 2021[27]大麦、燕麦 乳液 葡聚糖在乳液中用作乳化剂、稳定剂 Karp S, 2019[28]燕麦 脱脂奶 用作脂肪替代品images/BZ_46_1892_2571_2151_2610.png[29]燕麦、大麦 发酵乳 用作功能性成分增加产品的膳食纤维和益生作用Lazaridou A, 2007[30]饮品大麦 酸奶 含有 β-葡聚糖的酸奶具有高粘度、高氨基酸含量的功能Rinaldi L, 2015[31]燕麦 肉类 以不同浓度添加到肉类中改善其质地及增加其营养功能Smvm A, 2018[32]燕麦 香肠 β-葡聚糖与抗性淀粉的相互作用可以提高蒸煮产量特性和整体可接受性Sarteshniz R A, 2015[33]大麦 膨化零食 含有 β-葡聚糖的产品具有更好的质构特性和低血糖生成指数Brennan M A, 2013[34]膨化食品及肉类燕麦 肉丸 脂肪替代品,改善肉丸质地 Pinero M P, 2008[35]
β-葡聚糖添加到面制品中,一方面可以增加产品的水溶性膳食纤维含量;另一方面影响面团流变特性、水合特性以及产品质地等。研究表明适量添加燕麦β-葡聚糖(OG)能够改善面团流变学特性,添加0.5%~5.0%的OG于低筋、中筋和高筋面粉及馒头专用粉中,随着添加量增加,4种面粉面团的吸水率、形成时间和稳定时间均增大;0.5%~1.0%的OG添加量能使低筋面粉的拉伸特性接近馒头专用面粉;OG能使中筋面粉的糊化温度稍有升高,但亦能降低馒头专用粉糊化温度及4种面粉的最终黏度、衰减值和回生值[36]。也有研究表明,β-葡聚糖的添加对面团有劣化作用,当添加大麦β-葡聚糖(BG)≥0.5%,小麦面团抗延伸阻力增加,面团形成时间、稳定时间、弱化度(值)及延伸性均显著降低;β-葡聚糖添加量≥1.5%时,小麦粉面包比容明显减小、硬度增大、弹性降低[37]。
β-葡聚糖还通过影响面团水合特性而影响产品品质。研究表明,OG添加在面条和馒头中可抑制水分迁移和淀粉老化,减少失水率和烹调损失[38-39]。含 OG 70%的水溶性膳食纤维添加到小麦粉中,通过优化含水量,可以得到和白面包类似质构的富含可溶性膳食纤维(SDF)的面包[40]。β-葡聚糖对面团水合特性的影响与其分子大小等精细结构有关[41]。Skendi等[42]研究了两种不同相对分子质量(1.00×105 和 2.03×105)BG 对两种小麦粉面团流变学、黏弹性和面包品质的影响,结果表明,两种分子量BG均能增加面团的弹性、抗变形性和流动性,其中低分子量 BG 添加到低筋小麦粉中得到与高筋小麦粉品质类似的面粉。Rieder等[43]指出高分子量的β-葡聚糖能增加面团水相粘度,稳定气孔;但Gill等[44]则指出高分子量的β-葡聚糖会对面团造成更为不利的影响,使面团的抗延展性更高,膨胀性更低。这是由于高分子量β-葡聚糖遇水产生高粘性凝胶,附着在面筋蛋白表面,与面筋蛋白竞争水分,影响面筋网络结构的形成与稳定性[45]。
近年来,对谷物β-葡聚糖的研究已经拓展到其与其它大分子复合物理化性质的研究与应用领域。
2.2.1 β-葡聚糖多糖复合物
β-葡聚糖具有一定的凝胶性,与多糖复配可以增强其凝胶性。魔芋葡甘露聚糖与β-葡聚糖的相互作用能够通过氢键吸附和包埋β-葡聚糖分子而显著增强复合凝胶的流动性、持水性、黏弹性、内聚性及贮藏稳定性,但对硬度有明显降低作用[43]。因此,添加适量魔芋葡甘露聚糖可增加β-葡聚糖在涂抹性食品中的应用潜力。燕麦淀粉中添加β-葡聚糖后也可以通过氢键连接形成均匀致密的网络结构,β-葡聚糖对淀粉结晶区有一定的保护作用,在超高压处理条件下可形成晶核,抑制淀粉老化[44]。大麦β-葡聚糖与小麦淀粉复配,也会通过氢键结合在淀粉颗粒表面,促进吸水膨胀和直链淀粉有序化排列并增加了直链淀粉的重均相对分子质量[46]。
β-葡聚糖具有一定的凝胶性,与多糖复配可以增强其凝胶性,进一步影响食品的加工品质。研究表明魔芋葡甘露聚糖与β-葡聚糖的相互作用能够通过氢键吸附和包埋β-葡聚糖分子而显著增强复合凝胶的流动性、持水性、黏弹性、内聚性及贮藏稳定性,但对硬度有明显降低作用。魔芋甘露聚糖与β-葡聚糖复合,可增加β-葡聚糖在涂抹性食品中的应用潜力[47]。β-葡聚糖添加到燕麦淀粉中可通过氢键连接形成均匀致密的网络结构,β-葡聚糖对淀粉结晶区有一定的保护作用,在超高压处理条件下可形成晶核,抑制淀粉老化[48]。大麦β-葡聚糖能够促进小麦淀粉的溶胀和糊化,BBG提高通过氢键结合在淀粉颗粒表面,促进吸水膨胀和直链淀粉有序化排列并增加了直链淀粉的重均相对分子质量,形成复合凝胶降低冷藏过程中的硬度和热焓值,延缓小麦淀粉的长期回生[49]。采用喷雾干燥法,大麦β-葡聚糖复合改性玉米淀粉微胶囊可以包裹鱼油(EPA),防止鱼油氧化[50]。
2.2.2 β-葡聚糖脂质复合物
食品体系中,谷物 β-葡聚糖可能与其中的不同脂质结合形成复合物,对亲脂性小分子有一定荷载作用,可以促进其靶向释放,提高生物可利用率。利用饱和脂肪酸硬脂酸对燕麦β-葡聚糖进行疏水改性,可以获得燕麦β-葡聚糖硬脂酸酯,并用于负载杨梅素,在燕麦β-葡聚糖硬脂酸酯的浓度为1.5 mg/mL,燕麦β-葡聚糖硬脂酸酯与杨梅素添加比例1∶1,在12 Kr/min均质速度下均质 3 min,复合物中杨梅素的荷载量能够达到55.86 μg/mg,并对杨梅素有一定缓释作用[46]。燕麦β-葡聚糖与辛烯基琥珀酸酐(OS)通过酯化反应可获得 OS-燕麦 β-葡聚糖酯(OSβG),不同取代度和重均分子质量的OSβG能够自聚集成表面带负电荷、粒径为175~600 nm的球形胶束,并具有载荷姜黄素作用,取代度为0.019 9和重均分子质量为1.68×105 g/mol的OSβG能够荷载姜黄素(4.21±0.16) μg/mg[51];但食品中的氨基酸对 OSβG载荷姜黄素的稳定性有一定影响[52]。辛烯基琥珀酸酐与青稞β-葡聚糖形成的复合酯,以此作为壁材,黑果枸杞花青素作为芯材,在水相体系中可以包埋46%的花青素作用,花青素微胶囊在低温和较低 pH条件下较稳定,且对氧化降解有一定的保护作用[53]。
2.2.3 β-葡聚糖蛋白质复合物
谷物 β-葡聚糖与蛋白质相互作用,可以增强其功能特性,拓宽β-葡聚糖的应用范围,也为富含β-葡聚糖食品的精准加工和精准营养提供了新的思路。大麦β-葡聚糖(BG)与面筋蛋白可在水相分散系中产生直接相互作用,当水分过量时,BG通过增加面筋蛋白在水相中对弱结合水的束缚能力而增加了面筋蛋白的持水性和可冻结水含量,弱化面筋蛋白交联;利用BG对小麦面筋蛋白进行糖基化改性,能显著提高小麦蛋白的溶解度和乳化性和起泡性,这些结果为大麦β-葡聚糖复合小麦蛋白作为脂肪模拟物的制备和应用提供了新思路[12,54]。燕麦β-葡聚糖(OG)和乳铁蛋白在 25 ℃和 90 ℃条件下能够改变乳铁蛋白的二级结构形成自组装体和热聚集体,热处理后形成球形颗粒,进一步喷雾干燥,能够用于运载姜黄素[55]。燕麦β-葡聚糖与大豆分离蛋白可以通过氢键相互作用,增强混合凝胶的乳化性和凝胶性,并提高混合凝胶的玻璃化转变温度(Tg)和热稳定性[56]。将不同浓度(0.25%~1%)的燕麦 β-葡聚糖添加到4%的肌原纤维蛋白溶液中,于80 ℃的温度条件下加热20 min制成复合凝胶,能显著提高肌原纤维蛋白凝胶保水性、凝胶硬度和肌原纤维蛋白粘弹性[57];香肠中加入大麦β-葡聚糖可以使肌肉蛋白质形成更紧密的网络结构而提高香肠持水性和蛋白质变性温度[58],这些研究为富含β-葡聚糖的肉糜制品的研发提供了理论依据。近年来,植物基饮品或奶制品产品的消费呈现不断增长的趋势,牛奶中添加高分子量的燕麦β-葡聚糖可以降低牛奶的能量并具有降胆固醇的作用,因此,β-葡聚糖与牛乳蛋白相互作用的研究也较多,β-葡聚糖添加对牛乳体系的粘度、产品的流动性和稳定性都会产生一定的影响。酸凝固酪蛋白酸钠和BG混合凝胶在微观水平上存在相分离,在β-葡聚糖低浓度(3% w/w)时混合体系的特性受控于蛋白质的组成,但随着多糖浓度的增加,混合体系凝胶强度和热稳定性则受到多糖结构的影响,即酸化脱脂牛奶凝胶中包含 BG可削弱蛋白质网络结构[58]。多糖分子量变化也会引起蛋白质/多糖混合体系的相分离,OG和酪蛋白酸纳混合体系产生相分离现象所需的OG含量取决于自身分子量,当 OG 相对分子质量(Mr)由 3.5×104增大到6.5×104时,其所需含量由2%~ 2.5%(w/w)减少到 1%~1.5%(w/w)即可表现出热力学不相容性[59]。在热动力学平衡的状态下,混合体系中低分子量β-葡聚糖的粘度是影响体系平衡状态的因素,依赖于蛋白质浓度变化高分子量β-葡聚糖能够迅速聚集[60]。BG(产品名 GLucagel)对脱脂牛奶相分离的驱动力是在多糖分子中酪蛋白胶粒的絮凝损耗,随着酪蛋白胶粒容积率和大麦GLucagel浓度的不同,两相体系或者由于瞬时凝胶态或形成沉淀而分离,较高浓度的β-葡聚糖可以提高酪蛋白胶粒的容积率[61]。因此,牛奶蛋白与β-葡聚糖的热力学不相容性以及相分离是对产品的一个很大的挑战。
谷物 β-葡聚糖作为一类重要的水溶性膳食纤维,近年来对β-葡聚糖及其食品的消化、吸收、转运与代谢与健康功能相关的研究都有了不断的深入,特别是从β-葡聚糖分子特性与精准营养相关性方面,研究报道都有了纵深的发展。主要的研究内容见表3。β-葡聚糖的营养功能主要包括对胃肠道健康的影响、降血糖、降脂减肥、改善肠道菌群、抗氧化与抗炎、免疫促进以及部分抗癌功能。这些研究从β-葡聚糖原料来源、加工方式、分子大小或粘度高低等方面,采用体内外研究等多种不同对象,从生化指标、代谢调控以及代谢组学、基因组学和转录组学等多方面对营养功效进行表征。这些研究不仅从理论上诠释了β-葡聚糖的营养作用,也为未来研发新型健康食品提供了科学依据。
表3 谷物β-葡聚糖的营养研究概况
Table 3 General situation on nutrition research for cereal β-glucan
谷物 β-葡聚糖作为全谷物食品中明显具有健康功效的膳食纤维组分,已被从多种谷物及其副产品(麸皮等)中单独提取纯化,并应用于各类食品的生产中。向食品中添加谷物β-葡聚糖,不仅可以增加食品的膳食纤维含量,提高其健康功效,同时可利用谷物β-葡聚糖自身黏度、凝胶特性和流动特性等功能特性改善食品品质。因此,谷物β-葡聚糖已经成为健康食品领域的炙手可热的原料或食品配料之一。然而,目前虽然已有多项研究关注如何提高β-葡聚糖提取率及纯度,但工艺条件仍然局限在实验室规模,缺乏适合工业化生产的提取纯化工艺,这仍然是制约谷物β-葡聚糖进一步产业化发展的主要因素。此外,目前谷物β-葡聚糖与淀粉、蛋白质、脂质等其他大分子形成的复合物的功能特性研究及在食品中的应用成为该领域新的研究热点,但是复合后谷物β-葡聚糖的健康功效及作用机制与单纯谷物β-葡聚糖相比差异如何,这也是值得进一步研究的科学问题。
[1]MCRAE M P. Health benefits of dietary whole grains: an umbrella review of meta-analyses[J]. Journal of Chiropractic Medicine, 2017, 16(1): 10-18.
[2]HUANG T, XU M, LEE A, et al. Consumption of whole grains and cereal fiber and total and cause-specific mortality:prospective analysis of 367, 442 individuals[J]. BMC Med,2015, 13(1): 59-68.
[3]AHMADA A, ANJUMB F M, ZAHOOR T, et al. Extraction and characterization of β-d-glucan from oat for industrial utilization[J]. International Journal of Biological Macromolecules, 2010,46: 304-309.
[4]BARRETT E M, PROBST Y C, BECK E J. Creation of a database for the estimation of cereal fibre content in foods[J].Journal of Food Composition & Analysis, 2018, 66: 1-6.
[5]申瑞玲, 姚惠源. 谷物 β-葡聚糖提取和纯化[J]. 粮食与油脂,2003, (7): 19-21.SHEN R L, YAO H Y. Extraction and purification of the β-glucans in grains[J]. Cereals & Oils, 2003, (7): 19-21.
[6]孟续, 李言, 钱海峰, 等. 燕麦β-葡聚糖的提取制备及纯化研究进展[J]. 食品与发酵工业, 2021, 47(21): 268-274.MENG X, LI Y, QIAN H F, et al. Research progress on extraction, preparation and purification of oat β-glucan[J]. Food and Fermentation Industries, 2021, 47(21): 268-274.
[7]WOOD P J, SIDDIQUI I R, PATON D. Extraction of high-viscosity gums from oats.[J]. Cereal Chemistry, 1978,55(6): 1038-1049.
[8]MISHRA N, MISHRA N, MISHRA P. Influence of different extraction methods on physiochemical and biological properties of β-glucan from indina barley varieties[J]. Carpathian Journal of Food Science and Technology, 2020, 12(1): 27-39.
[9]BENITO-ROMÁN Ó, ALONSO E, GAIROLA K, et al. Fixedbed extraction of β-glucan from cereals by means of pressurized hot water[J]. The Journal of Supercritical Fluids, 2013, 82:122-128.
[10]顾飞燕. 青稞 β-葡聚糖的提取及其在化妆品中的应用[D]. 上海应用技术大学, 2018.GU F Y. Extraction of β-glucan from highland barley and its application in cosmetics[D]. Shanghai Institute of Technology,2018.
[11]刘新琦, 何先喆, 刘洁纯, 等.发酵法提取青稞麸皮中 β-葡聚糖的工艺优化及其理化性质研究[J]. 食品工业科技, 2020,41(7): 49-54.LIU X Q, HE X Z, LIU C J, et al. Study on optimization of extraction process of barley bran β-glucan by fermentation and its physicochemical properties[J]. Science and Technology of Food Industry, 2020, 41(7): 49-54.
[12]黄泽华. 大麦 β-葡聚糖微凝胶热诱导融渗影响小麦蛋白交联的机理及应用[D]. 江南大学, 2019.HUANG Z H. Study on the effect of thermally induced infiltration of barley β-glucan microgel on wheat protein aggregation and the application[D]. Jiangnan University, 2019.
[13]申瑞玲. 燕麦 β-葡聚糖的提取纯化及功能特性研究[D]. 江南大学, 2005.SHEN R L. Study on the extraction, purification and characterization of oat β-glucan[D]. Jiangnan University, 2005.
[14]YOO H U, KO M J, CHUNG M S. Hydrolysis of beta-glucan in oat flour during s-ubcritical-water extraction[J]. Food Chemistry,https://doi.org/10.1016/j.foodchem.2019.125670.
[15]SIBAKOV J, ABECASSIS J, BARRON C, et al. Electrostatic separation combined with ultra-fine grinding to produce betaglucan enriched ingredients from oat bran[J]. Innovative Food Science & Emerging Technologies, 2014, 26: 445-455.
[16]申瑞玲, 何俊, 赵学伟. 谷物β-葡聚糖的提取方法、化学结构及功能性质研究进展[J]. 食品科学, 2009, 30(3): 288-291.SHEN R L, HE J, ZHAO X W. Research progress of extraction technology, chemical structure and functional properties of cereal β-D-glucan[J]. Food Science, 2009, 30(3): 288-291.
[17]吴迪, 邴雪, 王昌涛, 等. 双向发酵提取燕麦β-葡聚糖及其理化性质研究[J]. 食品研究与开发, 2019, 40(1): 184-193.WU D, BING X, WANG C T. Bidirectional fermentation of oat β-glucan and research of physical and chemical properties[J].Food Research and Development, 2019, 40(1): 184-193.
[18]黄玉炎, 柴小岩, 何桀, 等. 超声辅助冻融法提取燕麦麸β-葡聚糖[J]. 食品研究与开发, 2021, 42(3): 68-72.HUANG Y Y, CAI X Y, HE J, et al. Ultrasonic assisted freeze-thaw extraction of β-glucan from oat bran[J]. Food Research and Development, 2021, 42(3): 68-72.
[19]李密转, 路文秀, 李名立, 等. 超声波联合酶法提取燕麦麸皮β-葡聚糖的工艺优化[J]. 贵州农业科学, 2020, 48(11): 91-95.LI M Z, LU W X, LI M L, et al. Optimization on extraction process of oat bran β-glucan by ultrasonic combined with enzymatic method[J]. Guizhou Agricultural Sciences, 2020,48(11): 91-95.
[20]杨成峻, 陈明舜, 戴涛涛, 等. 燕麦 β-葡聚糖功能与应用研究进展[J]. 中国食品学报, 2021, 21(6): 301-311.YANG C J, CHEN M S, DAI T T, et al. Research advances in functional properties and application of oat β-glucan[J]. Journal of Chinese Institute of Food Science and Technology, 2021,21(6): 301-311.
[21]IZYDORCZYK M S, DEXTER J E. Barley β-glucans and arabinoxylans: Molecular structure, physicochemical properties,and uses in food products-a review[J]. Food Research International, 2008, 41(9): 850-868.
[22]GAMEL T H, ABDEL-AAL E, AMES N P, et al. Enzymatic extraction of beta-glucan from oat bran cereals and oat crackers and optimization of viscosity measurement[J]. Journal of Cereal Science, 2014, 59(1): 33-40.
[23]PEREZ-QUIRCE S, RONDA F, LAZARIDOU A, et al. Effect of barley and oat beta-glucan concentrates on gluten-free rice-based doughs and bread characteristics[J]. Food hydrocolloids, 2015,48: 197-207.
[24]INGLETT G E, PETERSON S C, CARRIERe C J, et al.Rheological, textural, and sensory properties of Asian noodles containing an oat cereal hydrocolloid[J]. Food Chemistry, 2005,90(1-2): 1-8.
[25]MESSIA M C, ORIENTE M, ANGELICOLA M, et al.Development of functional couscous enriched in barley βglucans[J]. Journal of Cereal Science, 2018, 85: 137-142.
[26]LIU N, NGUYEN H, WISMER W, et al. Development of an orange-flavoured functional beverage formulated with betaglucan and coenzyme Q10-impregnated beta-glucan[J]. Journal of Functional Foods, 2018, 47: 397-404.
[27]HUANG K, ZHANG S R, GUAN X, et al. Effect of the oat βglucan on the development of functional quinoa (Chenopodium quinoa wild) milk[J]. Food Chemistry, https://doi.org/10.1016/j.foodchem.2021.129201.
[28]KARP S, WYRWISZ J, KUREK M A. Comparative analysis of the physical properties of o/w emulsions stabilised by cereal β-glucan and other stabilisers[J]. International Journal of Biological Macromolecules, 2019, 132: 236-243.
[29]SHARAFBAFI N, TOSH S M, ALEXANDER M, et al. Phase behaviour, rheological properties, and microstructure of oat β-glucan-milk mixtures[J]. Food Hydrocolloids, 2014, 41:274-280.
[30]LAZARIDOU A, BILIADERIS C G. Molecular aspects of cereal β-glucan functionality: Physical properties, technological applications and physiological effects[J]. Journal of Cereal Science, 2007, 46(2): 101-118.
[31]RINALDI L, RIOUX L E, BRITTEN M, et al. In vitro bioaccessibility of peptides and amino acids from yogurt made with starch, pectin, or β-glucan[J]. International Dairy Journal,2015, 46: 39-45.
[32]MEJIA S M V, FRANCISCO A D, BARRETO P L M, et al.Incorporation of β-glucans in meat emulsions through an optimal mixture modeling systems[J]. Meat Science, 2018, 143: 210-218.
[33]SARTESHNIZ R A, HOSSEINI H, BONDARIANZADEH D, et al. Optimization of prebiotic sausage formulation: Effect of using beta-glucan and resistant starch by D-optimal mixture design approach[J]. LWT-Food Science & Technology, 2015,62(1): 704-710.
[34]BRENNAN M A, DERBYSHIRE E, TIWARI B K. Integration of β-glucan fibre rich fractions from barley and mushrooms to form healthy extruded snacks[J]. Plant Foods for Human Nutrition, 2013, 68(1): 78-82.
[35]PINERO M P, PARRA K, HUERTA-LEIDENZ N, et al. Effect of oat's soluble fibre (β-glucan) as a fat replacer on physical,chemical, microbiological and sensory properties of low-fat beef patties[J]. Meat Science, 2008, 80(3): 675-680.
[36]潘利华, 徐婷婷, 罗水忠, 等. 适量燕麦β-葡聚糖改善面团流变学特性[J]. 农业工程学报, 2015, 31(18): 304-310.PAN L H, XU T T, LUO S Z, et al. Appropriate addition of oat β-glucan improving rheological properties of dough[J].Transactions of the Chinese Society of Agricultural Engineering,2015, 31(18): 304-310.
[37]李真. 大麦粉对面团特性和面包烘焙品质的影响及改良剂研究[D]. 江苏大学, 2014.LI Z. Effect of barley flour on dough properties and bread quality and its improver study[D]. Jiangsu University, 2014.
[38]NGUYEN T T L, FLANAGANB B M, TAO K. Effect of processing on the solubility and molecular size of oat β-glucan and consequences for starch digestibility of oat-fortified noodles[J].Food Chemistry. https://doi.org/10.1016/ j.foodchem.2021.131291.
[39]XU S Y, GONG Y Y, RAFIQUE H. et, al. Effect of oat β-glucan addition on the staling properties of wheat-oat blended flour Chinese steamed bread[J]. Bioactive Carbohydrates and Dietary Fibre, https://doi.org/10.1016/j.bcdf.2021.100285.
[40]ERIVE M O, HE F, WANG T, et al. Development of β-glucan enriched wheat bread using soluble oat fiber[J]. Journal of Cereal Science, 2020, 95: 103051.
[41]RONDA F, PEREZ-QUIRCE S, LAZARIDOU A, et al. Effect of barley and oat β-glucan concentrates on gluten-free rice based doughs and bread characteristics[J]. Food Hydrocolloids, 2015,48: 197-207.
[42]SKENDI A, BILIADERIS C G, PAPAGEORGIOU M, et al.Effects of two barley β-glucan isolates on wheat flour dough and bread properties[J]. Food Chemistry, 2010, 119(3): 1159-1167.
[43]RIEDER A, HOLTEKJ LEN A K., SAHLSTR M S, et al. Effect of barley and oat flour types and sourdoughs on dough rheology and bread quality of composite wheat bread[J]. Journal of Cereal Science, 2012, 55(1): 44-52.
[44]GILL S, VASANTHAN T, OORAIKUL B, et al. Wheat bread quality as influenced by the substitution of waxy and regular barley flours in their native and extruded forms[J]. Journal of Cereal Science, 2002, 36(2): 219-237.
[45]HEINIO R L, NOORT M W J, KATINA K, et al. Sensory characteristics of wholegrain and bran-rich cereal foods-A review[J]. Trends in Food Science &Technology, 2016, 47: 25-38.
[46]杨维宇. 燕麦 β-葡聚糖硬脂酸酯的制备及杨梅素负载性能研究[D]. 南昌大学, 2020.YANG W Y. The study on the preparation of oat β-glucan srearate aster and its properties of myricetin loaded[D].Nanchang University, 2020.
[47]蔡梦思, 谢勇, 周勇军, 等. 魔芋葡甘露聚糖对β-葡聚糖复合凝胶性质的影响[J/OL]. 食品与发酵工业: DOI:10.13995/j.cnki.11-1802/ts.028585.CAI M S, XIE Y, ZHOU Y J, et al. Effect of konjac glucomannan on the properties of β-glucan composite gel[J/OL].Food and Fermentation Industries. DOI:10.13995/ j.cnki.11-1802/ts.028585.
[48]张晶. 超高压处理对燕麦淀粉/β-葡聚糖复配体系的影响及抑制淀粉老化机制的研究[D]. 内蒙古农业大学, 2021.ZHANG J. Study on the effects of ultra-high pressure treatment on oat starch/β-glucan compound system and mechanism of inhibiting retrogradation of starch[D]. Inner Mongolia University, 2021.
[49]李渊. 大麦 β-葡聚糖对小麦面团性质影响的机理研究[D]. 江南大学, 2016.LI Y. Mechanism study on the effects of barley β-glucan on the properties of wheat dough[D]. Jiangnan University, 2016.
[50]KUREK M A, MOCZKOWSKA M, PIECZYKOLAN E, et al.Barley β-D-glucan-modified starch complex as potential encapsulation agent for fish oil[J]. International Journal of Biological Macromolecules. 2018, 120: 596-602.
[51]刘嘉. OS-燕麦 β-葡聚糖酯自聚集体的构建及应用[D]. 西南大学, 2015.LIU J. Conshruction and application of octenylsuccinate oat β-glucan self-assemblies[D]. Southwest University, 2015.
[52]马倩, 赵晨阳, 吴振, 等. 氨基酸对不同 pH 条件下辛烯基琥珀酸燕麦β-葡聚糖酯自聚集行为的影响[J]. 食品与发酵工业,DOI: 10.13995/j.cnki.11-1802/ts.027855.MA Q, ZHAO Q Y, WU Z, et al. Effects of amino acids on the self-assembly behaviors of octenylsuccinated oat β-glucan under different pH conditions[J]. Food and Fermentation Industries,DOI:10.13995/j.cnki.11-1802/ts.027855.
[53]陈虎. 改性 β-葡聚糖提高黑果枸杞花青素稳定性的技术及功能性评价[D]. 青海大学, 2018.CHEN H. Technical and functional evaluation of improving the stability of anthocyanin of lycium ruthenicum murr by modified β-glucan[D]. Qinghai university, 2018.
[54]张桢玉. 大麦 β-葡聚糖复合小麦蛋白脂肪替代物的制备及应用研究[D]. 江南大学, 2021.ZAHNG Z Y. Preparation and application of a fat replacer compounding barley β-glucan with wheat protein[D]. Jiangnan University, 2021.
[55]邓楚君. 乳铁蛋白、姜黄素、燕麦 β-葡聚糖二元及三元复合物的结构特征及自组装机制研究[D]. 河南科技学院, 2019.DENG C J. Structural characteristics and self-assembly mechanism of the binary and ternary complexes by lactoferrin,curcumin and oat β-glucan[D]. Henan Institute of Science and Technology, 2019.
[56]SHEN R L, LIU X Y, DONG J L, et al. The gel properties and microstructure of the mixture of oat b-glucan/soy protein isolates[J]. Food Hydrocolloids, 2015, 47: 108-114.
[57]左淑荣. 燕麦β-Glucan的理化特性及其与肌原纤维蛋白的相互作用研究[D]. 合肥工业大学. 2018.ZUO S R. Studies on physicochemical of oat β-glucan and its interaction with myofibrillar protein[D]. Hefei University of Technology. 2018.
[58]KONTOGIORGOS V, RITZOULIS C, BILIADERIS C G, et al.Effect of barley β-glucan concentration on the microstructural and mechanical behaviour of acid-set sodium caseinate gels[J].Food Hydrocolloids, 2006, 20(5): 749-756.
[59]LAZARIDOU A, BILIADERIS C G. Concurrent phase separation and gelation in mixed oat β-glucans/sodium caseinate and oat β-glucans/pullulan aqueous dispersions[J]. Food Hydrocolloids, 2009, 23(3): 886-895.
[60]LAZARIDOU A, SERAFEIMIDOU A, BILIADERIS C G, et al.Structure development and acidification kinetics infermented milk containing oat β-glucan, a yogurt culture and a probiotic strain[J]. Food Hydrocolloids, 2014, 39: 204-214.
[61]REPIN N, SCANLON M G, FULCHER R G. Phase behaviour of casein micelles and barley beta-glucan polymer molecules in dietary fibre-enriched dairy systems[J]. Journal of Colloid &Interface Science, 2012, 377(1): 7-12.
[62]PENTIKÄINEN S, KARHUNEN L, FLANDER L. Enrichment of biscuits and juice with oat b-glucan enhances postprandial satiety[J]. Appetite, 2014, 75: 150-156.
[63]CHEN H, NIE Q, XIE M, et al. Protective effects of β-glucan isolated from highland barley on ethanol induced gastric damage in rats and its benefits to mice gut conditions[J]. Food Research International, 2019, 122: 157-166.
[64]DONG J L, ZHANG W L, LIN J, et al. The gastrointestinal metabolic effects of oat product based-β-glucan in mice[J]. Food Science & Biotechnology, 2014, 23(3):917-924.
[65]SHEN R L, CAI F L, DONG J L, et al. Hypoglycemic effects and biochemical mechanisms of oat products on streptozotocininduced diabetic mice[J]. Journal of Agricultural and Food Chemistry, 2011, 59(16): 8895-8900.
[66]蔡凤丽. 燕麦产品的降血糖功效和机理研究[D]. 郑州轻工业学院, 2011.CAI F L. Research on hypoglycemic effect of oat products and its mechanism[D]. Zhengzhou University of Light Industry,2011.
[67]沈南辉. 燕麦 β-葡聚糖对饮食诱导糖调节受损小鼠降血糖作用的研究[D]. 重庆大学, 2014.SHEN N H. Study on hypoglycemic effect of oat beta-glucan in mice with diet-induced impaired glucose regulation[D].Chongqing University, 2014.
[68]张宇. 燕麦 β-葡聚糖对淀粉消化吸收和血糖的影响[D]. 江南大学, 2015.ZHANG Y. Study on the effect of oat β-glucan on starch digestion, glucose adsorption and blood sugar[D]. Jiangnan University, 2015.
[69]PINO J L, MUJICA V, ARREDONDO M. Effect of dietary supplementation with oat β-glucan for 3 months in subjects with type Ⅱ diabetes: A randomize d, double-blind, controlled clinical trial[J]. Journal of Functional Foods, https:// doi.org/ 10.1016/j.jff.2020.104311.
[70]LIU Z H, LI B. Epicatechin and β-glucan from highland barley grain modulated glucose metabolism and showed synergistic effect via Akt pathway[J]. Journal of Functional Foods, https://doi.org/ 10.1016/j.jff.2021.104793.
[71]游水平. 燕麦 β-葡聚糖对脂多糖诱导小鼠非酒精性脂肪性肝炎的抑制作用研究[D]. 西北农林科技大学, 2013.YOU S P. The inhibiting effect of oat β-glucan on lipopolysaccharide-induced nonalcoholic steatohrpatitis in mice[D]. Northwest A&F University, 2013.
[72]DONG J L, ZHU Y Y, MA Y L, et al. Oat products modulate the gut microbiota and produce anti-obesity effects in obese rats[J].Journal of Functional Foods, 2016, 25: 408-420.
[73]孙鑫娟. 发酵大麦 β-葡聚糖的特性及其对脂代谢调节作用研究[D]. 江苏大学, 2019.SUN X J. The study on characteristics of fermented barley β-glucan and its regulation on lipid metabolism[D]. Jiangsu University, 2019.
[74]戎银秀. 青稞 β-葡聚糖的制备、结构解析及其降血脂活性的研究[D]. 苏州大学, 2018.RONG Y X. The extraction and structural elucidation of highland barley β-glucan and the investigation of its antihyperlipidemic effects[D]. Soochow University, 2018.
[75]SHEN R L, DANG X Y, DONG J L, et al. Effects of oat β-glucan on fecal characteristics intestinal microflora,and intestinal bacterial metabolites in rats[J]. Journal of Agricultural and Food Chemistry, 2012, 60(45): 11301-11308.
[76]聂晨曦. 青稞 β-葡聚糖理化性质及其对肠道菌群的影响[D].西北农林科技大学, 2019.NIE C X. Physicochemical properties of highland barley β-glucan and its effects on intestinal flora[D]. Northwest A&F University, 2019.
[77]DONG J L, YANG M, ZHU Y Y, et al. Comparative study of thermal processing on the physicochemical properties and prebiotic effects of the oat β-glucan by in vitro human fecal microbiota fermentation[J]. Food Research International, https://doi.org/10.1016/j.foodres.2020.109818.
[78]TANG T, SONG J J, WANG H W, et al. Qingke β-glucan synergizes with a β-glucan-utilizing Lactobacillus strain to relieve capsaicin-induced gastrointestinal injury in mice[J].International Journal of Biological Macromolecules, 2021, 174:289-299.
[79]CHENG W Y, LAM K L, LI X J, et al. Circadian disruptioninduced metabolic syndrome in mice is ameliorated by oat βglucan mediated by gut microbiota[J]. Carbohydrate Polymers,https://doi.org/10.1016/j.carbpol.2021.118216.
[80]XIAO X, ZHOU Y R, TAN C, et al. Barley β-glucan resist oxidative stress of Caenorhabditis elegans via daf-2/daf-16 pathway[J]. International journal of biological macromolecules,2021, 193(B): 1021-1031.
[81]HUSSAIN P R, RATHER S A, SURADKAR P P. Structural characterization and evaluation of antioxidant, anticancer and hypoglycemic activity of radiation degraded oat (Avena sativa)β-glucan[J]. Radiation Physics and Chemistry, 2018, 144: 218-230.
[82]SUCHECKA D, BŁASZCZYK K HARASYM J, et al. Impact of purified oat 1-3,1-4-b-d-glucan of different molecular weight on alleviation of inflammation parameters during gastritis[J].Journal of Functional Foods, 2017, 28: 11-18.
[83]HE X J, LIN Y, XUE Y, et al. Barley β-glucan gelatin sponge improves impaired wound healing in diabetic and immunosuppressed mice by regulating macrophage polarization[J]. Materials Today Communications, https://doi.org/10.1016/j.mtcomm.2021.102744.
[84]RÖSCH C, MEIJERINK M, DELAHAIJE R J B M, et al.Immunomodulatory properties of oat and barley β-glucan populations on bone marrow derived dendritic cells[J]. Journal of Functional Foods, 2016, 26: 279-289.
[85]SHEN R L, WANG Z, DONG J L. Effects of oat soluble and insoluble β-glucan on 1,2-dimethylhydrazine-induced early colon carcinogenesis in mice[J]. Food and Agricultural Immunology, 2016, 27(5): 1-10.
备注:本文的彩色图表可从本刊官网(http://lyspkj.ijournal.cn)、中国知网、万方、维普、超星等数据库下载获取。
Current Research Progress of Cereal β-Glucan as an Important Dietary Fiber Component in Whole Cereal Foods