冀州地区钢网式农户储粮仓玉米果穗仓储试验研究

翟晓娜,赵玉强,娄 正,师建芳,邵 广,谢奇珍,沈 瑾

(农业农村部规划设计研究院 农业农村部农产品产后处理重点实验室,北京 100121)

摘 要:冀州地区新收玉米果穗水分可高达30%,多采用马路晾晒方式,受天气影响程度大。典型钢网式农户储粮仓已在东北地区得到较好应用,为考察该类型储粮仓在冀州地区的适用性及其最佳装粮厚度,本试验以JSWD-120 钢网仓(4×1.5×2 m)为基本仓,装粮厚度分别设置为0.8、1.0 及1.2 m,玉米果穗从当年10 月中旬仓储至来年4 月上旬,并实时监测其水分、脂肪酸值、粗淀粉等品质变化。结果发现6 个月试验期后,装粮厚度1.2 m 这一侧仓内玉米质量较优,其水分可降至安全水分14.05%±0.001%、脂肪酸值仅为(51.59±0.007) mgKOH/100g、粗淀粉含量为(68.66±0.171) g/100g,其中直链淀粉占比约20.65%,且未检出脱氧雪腐镰刀菌烯醇与赭曲霉毒素A 等毒素。试验为农户钢网仓的向南推广及优化提供了一定试验依据。

关键词:玉米果穗;农户科学储粮;水分;质量品质

随着我国农作物机械化技术的加速推广,2018 年玉米的收获机械化率可达75%,并以果穗收获为主,但粮食产地烘干机械化率尚不足25%,且玉米收获时籽粒含水率普遍高达30%左右,大面积集中收获且自然晾晒场地缺乏,后续脱粒和晾晒用工成本仍然较高。2018 年在冀州地区调研期间,新收玉米马路晾晒的景象随处可见,若逢阴雨天气,则会造成果穗堆内部发芽霉变。如何有效帮助农户及合作社储藏高水分玉米果穗意义重大。

早在2007 年为减少农村粮食产后损失,原国家粮食局就启动了农户科学储粮专项工程,其中黑龙江中良仓储技术工程有限公司研发的“JSWD-120 型有骨架钢网仓”被黑龙江省纳入推广应用范畴,在农村储粮减损方面取得良好成效。

宽度是钢网仓设计的一个重要参数,宽度过大会影响粮仓中部玉米穗的降水效果,果穗易发生霉变,宽度过小则会增加单位储粮投资成本[1]。近年,在实际应用中我们发现,钢网式农户科学储粮仓在黑龙江地区的安全装粮厚度可达1.5 m,在吉林地区2017 年其安全装粮厚度仅为1.2 m。基于此,课题组以“JSWD-120 型有骨架钢网仓”矩形仓为试验基本仓,预探究其在华北冀州地区推广应用的可行性及其最佳装粮厚度。

1 材料与方法

1.1 材料

新收玉米果穗:河北永生食品有限公司,购自河北省衡水市冀州市西吕津村周边地区。

1.2 试验钢网仓

JSWD-120 矩形钢网仓(4×1.5×2 m):黑龙江中良仓储技术工程有限公司,按试验需求将该仓改造为装粮厚度分别为0.8、1.0 及1.2 m,改良后仓的俯视示意图如图1a 所示、实际装粮后的侧面效果如图1b 所示。同时以一个未改造仓,即装量厚度为1.5 m 仓为对照。

图1 试验网仓图(单位:mm)
Fig.1 The small-scale farm bin (Unit:mm)

a: 改造后仓的俯视示意图;b:实际网仓侧面图a: bird-eye view of test-bin, b: sideview of test-bin

1.3 粮情监测点布置

试验过程中,实时监测仓内粮堆及环境的温湿度,传感器购自北京九堡科技有限公司。在每个分割仓的垂直方向均匀放置3 个传感器,具体布置及编号如图2 所示,其中0.8 m 仓中3 个传感器从下往上依次为1-1、1-2、1-3;1.0 m 仓中传感器从下往上为2-1、2-2、2-3;1.2 m 仓中传感器从下往上为3-1、3-2、3-3。

图2 仓内传感器布置图(单位:mm)
Fig.2 Sensor layout diagram in the test-bin (Unit: mm)

a:传感器布置正面示意图;b:传感器布置俯视图a: front view, b: bird-eye view

1.4 取样及其检测方法

实时观测仓内及环境的温湿度变化,不定期定点取样进行品质检测。

水分含量:玉米果穗剥粒后用谷物水分测定仪(YFSGY-2)进行水分快速测定,每份样品测量两次取其平均值。脂肪酸值:按GB/T 29405—2012 测定;粗淀粉含量:按GB 5009.9—2016 测定;直链淀粉含量:按GB/T 15683—2008 测定;菌落总数:按GB 4789.2—2016 测定;脱氧雪腐镰刀菌烯醇含量:按GB 5009.111—2016 测定;赭曲霉毒素A 含量:按GB 5009.96—2016 测定。

2 结果与讨论

2.1 试验期间粮情变化情况

试验期间不同装粮厚度矩形仓中各监测点及环境温湿度的变化情况如图3 所示。从图中可知,试验期间仓内各监测点粮堆的温度整体变化趋势与环境变化一致,并呈现先降低后升高的趋势,且粮堆温度均低于环境温度。试验周期内最高粮温低于25 ℃,并在2019 年11 月上旬至2020 年3 月上旬维持在15 ℃以下,即处于低温储藏状态。就湿度而言,仓内湿度与环境湿度变化趋势基本相同,但不同时期表现不同,具体为入冬前期粮堆湿度略高于环境湿度,而12 月份之后粮堆湿度低于或与环境湿度持平。进一步比较不同仓内同一垂直高度的温度变化可发现(图4),仓储初期0.8 m 侧其底层粮温高于其他两侧,而12 月份之后该侧底层温度表现最低;就中层粮温而言,试验周期内0.8 m 侧内粮温最高;就上层粮温而言,可明显看出试验周期内1.0 m 侧仓内粮温最低。总体而言,试验期间仓内整体底层粮温偏低,可能与仓底通风流量较大有关[2]

图3 仓内及环境温湿度变化情况
Fig.3 Variation of temperature and humidity in test-bins and environment

图4 3 个仓同一高度监测点粮堆的温度变化情况
Fig.4 Variation of temperature in test-bins at a same height

2.2 玉米果穗湿基水分变化情况

试验期间玉米果穗的湿基水分变化如图5 所示。经过近6 个月的自然通风储藏,仓内玉米水分均可逐步降低至安全储藏水分,分别约为13.75%(0.8 m)、13.80%(1.0 m)和14.05%(1.2 m),且水分含量基本在来年3 月份初期基本稳定。具体表现为:仓内玉米果穗的水分在初始仓储半个月期间基本维持稳定、甚至略有上浮,这主要与仓储期间当地的阴雨天气有关;随着储藏时间的延长,环境温度逐渐降低、玉米果穗的水分开始逐步下降,3 月初仓内各监测点玉米水分约为13%~14%,这与依据李兴军等[3-4]的平衡水分方程计算得出的该地区历年13.5%~14.5%的平衡水分相近。再者仓储后期玉米果穗水分基本呈现出上层水分较低的特点,与刘长生等的试验结果相似[5]

图5 3 个试验仓内监测点玉米籽粒湿基水分的变化情况
Fig.5 Variation of corn’s moisture in test-bins over time

2.3 玉米果穗脂肪酸值的变化情况

粮食在仓储过程中其脂肪酸值会随着储藏时间的延长而逐渐上升,一般粮食初始水分较高、仓储温度越高,其脂肪酸值变化越快且幅度大[6-7]。GB/T 20570—2015《玉米储存品质判定规则》中明确规定当玉米的脂肪酸值≤65 mgKOH/100g 为宜存、≤78 mgKOH/100g 时为轻度不宜存。试验周期间玉米的脂肪酸值变化情况如图6 所示,整体呈现随仓储时间延长而增大的趋势,出仓时各仓的脂肪酸值分别为68.53 mgKOH/100g(0.8 m)> 57.46 mgKOH/100g(1.0 m)>51.59 mgKOH/100g (1.2 m),除0.8 m 侧外,其他两侧仓内玉米的脂肪酸值均在国标范围内。从图中可看出,储藏初期玉米的脂肪酸值变化较缓慢,但在天气回暖后显著上升,这可能是因为储藏过程中玉米中粗脂肪逐渐分解为游离脂肪酸进而发生氧化[8],而越冬储藏期间果穗一直处于低温储藏状态,其脂肪酸值增幅也相对较小,田元方[9]的试验表明当玉米的储藏气温和粮温较低时,其脂肪酸值平均每月上升0.6~1.0 mgKOH/100g 干样。此外,试验周期内0.8 m 侧底层(1-1#)和1.0 m 测中层(2-2#)的玉米脂肪酸值变化幅度相对较大,这与该两个检测点较高的粮温相吻合。

图6 3 个仓同一高度监测点玉米脂肪酸值的变化情况
Fig.6 Time-variation of corn’s fatty acid in test-bins of the same height

2.4 玉米果穗的粗淀粉及其直链淀粉含量变化情况

淀粉是玉米原粮中最主要的储藏物质,可分为直链淀粉和支链淀粉,在储藏过程中淀粉各组分含量会发生不同程度的变化,且淀粉的降解主要直观表现为直链淀粉的减少[10-11]。普通玉米一般淀粉含量约72%,其中直链淀粉约含30%,该试验周期内玉米果穗的粗淀粉及直链淀粉的含量变化情况如图7 所示,其粗淀粉含量约57%~75%,仓储初期粗淀粉含量的增加主要是因为初始对照值偏低,且果穗间误差较大;后期粗淀粉含量的明显增加主要是由于玉米含水量的降低;就直链淀粉含量而言,其含量呈逐渐降低的趋势,这可能与试验中随着仓储时间的延长籽粒中束缚性淀粉合成酶、即主要负责直链淀粉合成的酶活性的下降有关[12]。整体而言,仓内玉米粗淀粉(湿基含量)表现为逐步增加、直链淀粉含量逐步降低的趋势,与修琳等[13]在玉米越夏储藏中的结果相似,且试验仓上层的该指标的变化幅度相对较大。

图7 试验仓内玉米粗淀粉和直连淀粉含量的变化
Fig.7 Time-variation of corn’s crude starch and amylose content in test-bins

2.5 玉米果穗的菌落总数及其真菌毒素含量

高水分玉米在仓储过程中极易发生霉变,气候条件是影响霉菌感染的重要因素[14-15]。试验周期内,各仓的上层玉米果穗的菌落总数最大,其中仓储168 天后各仓上层玉米菌落总数分别为9.3×105 CFU/g(0.8 m)、3.9×105 CFU/g(1.0 m)与1.6×105 CFU/g(1.2 m),这与上层粮食受环境影响较大有关。李慧等[16]在研究玉米网仓(1.5×0.95×1.2 m)品质变化时也同样发现相比于下层玉米,上层和中层的玉米更易发生霉变。此外,试验过程中还对玉米籽粒中的呕吐毒素(脱氧雪腐镰刀菌烯醇,DON)和赭曲霉毒素A(CTA)进行了动态监测,但整个试验周期两种毒素均未检出(DON 和CTA 检测限分别为200 μg/kg、1 μg/kg)。其中DON 一般在刚收获后的谷物中污染较为严重,并与玉米的收获地区和年份的不同而有较大差别;北方大部分地区较干燥,不适合赭曲霉菌的生长和产毒[15]。此外,也有研究表明DON 含量与玉米生霉粒含量之间没有明显的相关性[17]

2.6 出仓后各仓内玉米的平均品质质量

仓储结束后,对各仓玉米果穗质量进行对比分析,同时对比1.5 m 仓内玉米质量。如图8 所示,经过近半年的仓储周期,各仓玉米果穗的水分均可降至14%左右,且无显著性差异;脂肪酸值明显增大且各仓间差异显著,但除1.5 m 仓外其他各仓的玉米均在宜存范围;粗淀粉含量有一定程度的增大并均在72%左右,直链淀粉含量均明显降低、且装粮厚度越大其含量越低。总体而言,仓储期结束后装粮厚度为1.2 m 的仓内玉米质量较高,具体表现为水分最高、脂肪酸值最低,分别为14.05%和51.59 mgKOH/100g,粗淀粉含量为69.66%(直链淀粉占比20.65%)。

图8 仓储前后玉米的品质变化
Fig.8 Quality changes of corn after 6 months’ storage

注:图中数据上方不同符号表示差异显著。
Note: Different symbols above the data in the figure indicate significant differences.

3 结论

在河北冀州地区应用钢网式农户储粮仓储藏新收获玉米果穗,经过6 个月试验周期后,不同装粮厚度仓内的玉米果穗均可降至安全水分且未检出呕吐毒素等真菌毒素,其中1.2 m 侧网仓玉米籽粒水分最高且脂肪酸值最低,1.5 m 网仓内玉米脂肪酸值超过玉米宜存国标,不宜在冀州地区使用;而1.2 m 侧仓内玉米质量较好这一现象可能与仓储期间的雨雪天气变化及其受风面积相对较大等诸多因素有关。综上,已在东北地区得到良好应用的钢网式农户储粮仓可通过优化其储粮的粮层厚度进一步向南推广应用[18]或在1.5 m 的经典网仓上加装机械通风管道以应对不同的季节变化,同时在装粮的时候应控制其杂质及发霉果穗的含量。

此外,在本试验中由于玉米果穗的取样与籽粒相比均一性较差,同时3 个不同装粮厚度的改造仓内相互关联,一定程度上无法完全真实反应装粮厚度对玉米果穗品质质量的影响。在今后试验过程中可通过采用加大果穗取样数量、借助重量传感器检测试验仓整体重量变化、增加试验过程中风速风量等因素监测、设置完全独立的不同装粮厚度试验仓,进一步深入探究储藏期内玉米果穗的品质变化,提高农户储粮仓的科学使用性。

参考文献:

[1] 刘长生, 李群, 王德华, 等. 钢制玉米穗储粮仓设计及使用要点[J]. 粮油食品科技, 2010, 18(1): 58-59.LIU C S, LI Q, WANG D H, et al. Design and using points of ear’s steel silo[J]. Science and Technology of Cereals, Oils and Foods, 2010, 18(1): 58-59.

[2] 刘立意, 汪雨晴, 赵德岩, 等. 农户用机械通风钢网式小麦干燥储藏仓的气流场分析[J]. 农业工程学报, 2020, 36(2): 312-319.LIU L Y, WANG Y Q, ZHAO D Y, et al. Analyzing airflow in dry grain storage silo with ventilation using CFD[J]. Transactions of the Chinese Society of Agricultura Engineering , 2020, 36(2):312-319.

[3] 李兴军, 王双林, 张元娣, 等. 玉米吸湿特性及其等温线类型研究[J]. 中国粮油学报, 2012, 27(1): 80-86.LI X J, WANG S L, ZHANG Y D, et al. The hygroscopic properties and sorption isotherm of corn[J]. Journal of the Chinese Cereals and Oils Association, 2012, 27(1): 80-86.

[4] 李兴军, 张元娣, 王双林, 等. 谷物安全水分估算[J]. 粮食加工, 2011, 36(3): 41-45.LI X J, ZHANG Y D, WANG S L, et al. Calculation of safe storage moisture content of cereal grains in China with the fitted MCPE model[J]. Grain Processing, 2011, 36(3): 41-45.

[5] 刘长生, 李群, 王德华, 等. 钢制农户储粮仓储存玉米穗试验[J]. 粮油食品科技, 2009, (4): 68-70.LIU C S, LI Q, WANG D H, et al. Experiment of ear’s storage using steel silo[J]. Science and Technology of Cereals, Oils and Foods, 2009, (4): 68-70.

[6] PARAGINSKI R T, VANIER N L, BERRIOS J D J, et al.Physicochemical and pasting properties of maize as affected by storage temperature[J]. Journal of Stored Products Research,2014, 59: 209-214.

[7] 王若兰, 李东岭, 田志琴, 等. 玉米气调储藏品质变化规律的研究[J]. 河南工业大学学报(自然科学版), 2011, 32(4): 1-5.WANG R L, LI D L, TIAN Z Q, et al. Change rule of maize quality under controlled atmosphere storage[J]. Journal of Henan University of Technology (Natural Science Edition), 2011, 32(4):1-5.

[8] 解慧, 修琳, 郑明珠, 等. 储藏时间对玉米原粮中脂肪酸组成的影响[J]. 中国粮油学报, 2016, 31(12): 101-105.XIE H, XIU L, ZHENG M Z, et al. Effects of storage time on fatty acid composition of maize[J]. Journal of the Chinese Cereals and Oils Association, 2016, 31(12): 101-105.

[9] 田元方. 采取综合立体控温措施散装储存高水分玉米[J]. 粮食储藏, 2008, 37(4) : 24-30.TIAN Y F. Application of comprehensive vertical keeping temperature technology on bulk corn with high moisture content[J]. Cereal Storage, 2008, 37(4): 24-30.

[10] 解慧, 修琳, 郑明珠, 等. 玉米贮藏过程中营养成分的变化[J]. 食品工业, 2014(12): 240-243.XIE H, XIU L, ZHENG M Z, et al. Change in maize of nutrient content during storage [J]. Food Industry, 2014(12): 240-243.

[11] 徐留安, 曹阳, 尹君, 等. 高水分玉米恒温加热破坏试验探讨[J]. 粮食加工, 2015(4): 54-57.XU L A, CAO Y, YING J, et al. Research on destructive heating test of high moisture corn stored in constant temperature[J].Cereal Processing, 2015(4): 54-57.

[12] 畅鹏飞, 修琳, 郑明珠, 等. 高温高湿贮藏对玉米淀粉合成关键酶的影响[J]. 中国粮油学报, 2015, 30(11): 37-41.CHANG P F, XIU L, ZHENG M Z, et al. Effects of high temperature and high humidity storage of corn grain on the activity of its key starch synthases[J]. Journal of the Chinese Cereals and Oils Association, 2015, 30(11): 37-41.

[13] 修琳, 畅鹏飞, 郑明珠, 等. 实验室模拟越夏贮藏条件对玉米籽粒中淀粉及淀粉酶活性的影响[J]. 粮食与饲料工业, 2016,(11): 5-8.XIU L, CHANG P F, ZHENG M Z, et al. Effect of high temperature and humidity storage on starch and amylase activity of corn grain[J]. Cereal & Feed Industry, 2016, (11): 5-8.

[14] 张来林, 李霁瀛, 赵妍, 等. 偏高水分玉米"控温保水"储粮新工艺研究Ⅱ不同储藏温度对玉米品质的影响[J]. 河南工业大学学报(自然科学版), 2019, 4(2): 100-105.ZHANG L L, LI J Y, ZHAO Y, et al. Study on new technology of high-moisture maize during storageⅡ effect of different storage temperatures on the maize quality[J]. Journal of Henan University of Technology (Natural Science Edition), 2019, 4 (2):100-105.

[15] 孙向东, 张瑞英, 兰静, 等. 玉米真菌毒素污染防控研究[J].农产品质量与安全, 2018, (2): 31-35+48.ZHANG X D, ZHANG R Y, LAN J, et al. Prevention and control of mycotoxin pollution in maize [J]. Quality and Safety of Agro-Products, 2018, (2): 31-35+48.

[16] 李慧, 王若兰, 渠琛玲, 等. 玉米储藏霉变条件及其品质研究[J]. 河南工业大学学报(自然科学版), 2018(4): 33-37.LI H, WANG R L, QU C L, et al. Study on moldy conditions of corn and its quality changes during storage[J]. Journal of Henan University of Technology (Natural Science Edition), 2018(4):33-37.

[17] 许利丽, 刘玉兰, 温运启, 等. 储存条件对玉米胚及粕和毛油中呕吐毒素含量的影响[J]. 中国油脂, 2017(2): 71-75.XU L L, LIU Y L, WEN Y Q, et al. Effects of storage conditions on vomitoxin content in corn germ and meal and crude oil[J].China Oils and Fats, 2017(2): 71-75.

[18] 仲立新, 柳芳久, 刘贤慧, 等. 东北农村科学储粮技术与新型装备的探索[J]. 干燥技术与设备, 2007, 5(6): 299-302.ZHONG L X, LIU F J, LIU X H, et al. Grain storing techniques and novel equipments used by farmers in northeast China[J].Drying Technology & Equipment, 2007, 5(6): 299-302.

Research on Corn Ears’ Storage by Rectangle Small-scale Farm Bin with Steel Framework in Jizhou

ZHAI Xiao-na, ZHAO Yu-qiang, LOU Zheng, SHI Jian-fang,SHAO Guang, XIE Qi-zhen, SHEN Jin
(Key Laboratory of Agro-Products Postharvest Handing, Ministry of Agriculture and Rural Affairs,Academy of Agricultural Planning and Engineering, MARA, Beijing 100021)

Abstract: The moisture of most newly harvested corn ears could be as high as 30% in Jizhou, and the method of air-drying on sides of roads, which is weather-sensitive, is mostly adopted in rural areas.Considering the small-scale farm bin has been used widely in the northeast of China, it is meaningful to explore its applicability and optimal thickness in Jizhou. In this study, JSWD-120 (4×1.5×2 m) is chosen and modified into tree small-scale bins with the thickness of 0.8 m, 1.0 m and 1.2 m. The newly harvest corn ears are stored from the middle October to early April and different quality index are analyzed timely. Results show that corn ears stored in the bin with the thickness of 1.2 m show good quality in terms of moisture of 14.05%±0.001%, lower fatty acid values of (51.59±0.007) mgKOH/100g, crude starch content of (68.66±0.171) g/100g and amylose content of 20.65%. Moreover, mycotoxins, such as deoxynivalenol and ochratoxin A, are not detected. Based on the experiment results, it is reasonable to consider wider utilization of JSWD farm bins to the south of China.

Key words: corn ear; farmers’ scientific grain storage; moisture; quality

中图分类号:TS210.1

文献标识码:A

文章编号:1007-7561(2021)05-0197-07

DOI: 10.16210/j.cnki.1007-7561.2021.05.027

翟晓娜,赵玉强,娄正, 等. 冀州地区钢网式农户储粮仓玉米果穗仓储试验研究[J]. 粮油食品科技, 2021, 29(5): 197-203.ZHAI X N, ZHAO Y Q, LOU Z, et al. Research on corn ears’ storage by rectangle small-scale farm bin with steel framework in Jizhou[J].Science and Technology of Cereals, Oils and Foods, 2021, 29(5): 197-203.

收稿日期:2021-01-13

基金项目:国家重点研发计划–粮食产后“全程不落地”技术模式示范工程(2017YFD0401400)

Supported by: National Key Researchand Development Project-Demonstration Project of Grain Postharvest technology mode (No. 2017YFD0401400)

作者简介:翟晓娜,女,1989 年出生,博士研究生,研究方向为农产品加工及贮藏。E-mail: zhaixiaona907@163.com.

备注:本文的彩色图表可从本刊官网(http://lyspkj.ijournal.cn)、中国知网、万方、维普、超星等数据库下载获取。