“多糖的性质分析与应用”特约专栏文章之五

食品加工技术影响多糖构效关系和溶液行为的研究进展

赵秀婷1,宋志萍1,付 萌1,李进伟2,朱 松2,范柳萍2

(1.无限极(中国)有限公司,江门 529100;2.江南大学 食品学院,无锡 214122)

摘 要:多糖是由10个以上单糖分子通过糖苷键连接而形成的天然高分子聚合物,多糖的结构复杂多样,是其生物活性的基础,生物学功能十分丰富,包括调节免疫和肠道菌群、抗肿瘤、抗氧化和降血糖等,多糖在保健食品和医药等方面具有广阔的应用前景。食品加工会对多糖结构、生物活性和溶液行为产生影响。超声、微波和高压均质处理能引起聚合物的降解,从而影响多糖的生物学功能和流变性等溶液行为。综述将聚焦加工工艺对多糖构效关系和溶液行为的影响,为多糖的开发应用提供一定的参考。

关键词:多糖;构效关系;溶液行为;超声;微波;高压均质

天然活性产物由于其高生物活性和安全性在食品和医药领域已日益引人注目。多糖(polysaccharide)作为一种重要的天然产物,是由 10个以上单糖分子通过糖苷键连接缩合而成的大分子聚合物。植物、动物和微生物食品原料中都含有大量的多糖资源,其难以被人体直接消化吸收,需经肠道菌群降解后吸收并产生生物学活性[1],如调节肠道菌群、调节免疫、抗肿瘤、抗病毒、抗氧化和降血糖等功能[2-6]。此外,由于多糖具有特殊的理化性质,在食品工业中也被广泛应用,比如作为稳定剂、乳化剂、澄清剂和增稠剂等[7-8]。因此,多糖在保健食品和医药等方面具有广阔的应用前景。

结构是多糖生物活性和溶液行为的基础,多糖的溶液行为决定着多糖溶液的稳定性,包括聚集行为、粘弹行为、构象转变行为等,由热力学性质和动力学性质决定[9-10]。食品加工技术对其结构、生理功能和溶液行为将产生巨大的影响。近年来,超声、微波和高压均质在食品工业中的应用引起了广泛关注[9-11]。一些研究表明超声、微波和高压均质处理能引起聚合物的降解[12-13],多糖的流变性、粘度及溶解性也会随之改变[14-15]。多糖在水溶液的溶解度、分子量、支化度、化学结构和链构象又会影响其生物活性(图 1)[16]。因此,本综述将聚焦加工工艺对多糖构效关系和溶液行为的影响,有助于在食品加工过程中更好地利用食品原料,同时为多糖的开发应用提供参考。

1 多糖结构与溶液行为和生物活性的关系

1.1 多糖分子量与溶液行为和生物活性的关系

早期研究表明,分子量较高的多糖具有高生物活性,可能与其与免疫细胞上受体的强结合能力有关[17-20]。但最近的研究表明,低分子量(301~1 010 kDa)的香菇多糖比高分子量(1 160~1 760 kDa)具有更强的抗肿瘤活性,甚至高于抗癌药5-氟尿嘧啶[21]。同样,较低分子量的葡聚糖(硬葡聚糖的水解产物,5 kDa)表现出较强的免疫活性[22]。分子量较低的多糖为刚性链,更容易与免疫细胞上的交联受体结合,因此具有较高的抗肿瘤活性。但是,如果分子量太低,对生物活性也会有不利影响。因此,确定活性多糖的适宜分子量范围具有重要意义。由于影响多糖提取纯化和活性的因素太多,不同研究得出的最适分子量范围差距较大。比如,王俊认为香菇多糖分子量范围在100~400 kDa活性最强[23],而Zhang等发现 500~1 500 kDa的香菇三螺旋葡聚糖表现出最强的抗肿瘤活性[24]。虽然多糖分子量大小与活性的关系存在争议,最适分子量范围也各不相同,但有一点可以确定,多糖的生物活性具有明显的分子量依赖性[21,25]。此外,不同多糖发挥功能的分子量依赖关系并不完全相同,需要对不同的多糖分别进行研究。

香菇多糖在水溶液中形成的聚集态结构同样具有分子量依赖性,尺寸太小的多糖无法相互缠结形成网络,而分子量太大的多糖可能自身发生折叠、堆积,形成带分支的链状结构[26]。Zhang等发现在香菇多糖水溶液中,只有短的香菇多糖三螺旋链有足够的刚性保持直棒状,从而通过平行堆积而形成有序的“柴火棒状”聚集结构(图1),当三螺旋链聚在一起成聚集体时,分子量明显从461 kDa增加到7 170 kDa,从而使溶液的稳定性降低[27]。由此可见,多糖的分子量不仅影响多糖活性,而且与其在水溶液中的聚集状态和溶液行为息息相关。

图1 香菇多糖水溶液(A)及其与免疫细胞受体相互作用(B)示意图[21,27-28]
Fig.1 The schematic diagram of mushroom polysaccharide aqueous solution (A) and its interaction with the immune cell receptor (B)[21,27-28]

注:A,在水溶液中,短的香菇多糖三螺旋链彼此紧密平行排列形成有序的“柴火棒状”聚集体。B,香菇多糖的刚性链构象随浓度的增加容易自聚集,降低了香菇多糖与免疫细胞受体的结合,从而降低其功能。此外,与高分子量香菇多糖相比,具有刚性链的低分子量香菇多糖与受体的相互作用更强。
Note: A) The three spiral chains are closely parallel to each other in the aqueous solution, forming an orderly “firewood stick like”aggregate; B) The rigid chain conformation of lentinan tends to self-aggregate with increasing concentration, which reduces the binding of Lentinan with immune cell receptor, thus reducing its function.Moreover, Low molecular weight Lentinan with rigid chain has stronger interaction with receptor when compared with high molecular weight Lentinan.

1.2 多糖结构与溶液行为和生物活性的关系

多糖的生物活性与一级结构有着紧密联系,其中最具活性的是β-(1→3)-葡聚糖为主链,(1→6)连接为分支结构的多糖[29],而以(1→6)连接为主链的多糖活性较弱,这可能是由于其灵活多变的特性而导致具有多种不稳定的空间构象[30-33]。Tong等从平菇子实体中分离纯化出一种主链结构为β-(1→3)-葡萄糖的水溶性多糖POPS-1,其在体外对人宫颈癌细胞具有显著的抑制作用,并呈现剂量依赖性[34]。此外,有研究表明多糖的单糖组成也与抗肿瘤活性相关,通常含有葡萄糖和甘露糖的多糖抗肿瘤活性较好,可能原因是在人类巨噬细胞中具有葡萄糖和甘露糖受体[35]。含有阿拉伯半乳聚糖的枸杞多糖具有最强的抗衰老活性[36]。也有人提出,多糖的抗肿瘤活性与支链的分支度和长度有关[37]。多糖的支链可以提供更多的羟基,有利于糖链分子之间以及糖链和水分子之间形成氢键,β-D-吡喃葡萄糖基分支侧链可提高多糖三螺旋结构的稳定性[38]。但如果分支度过高,则导致空间位阻增大,糖链间的连接不够紧凑,螺旋结构容易解体[23]。Bohn等比较了几十种葡聚糖的分支度和其抗肿瘤活性,结果显示分支度在0.2~0.33的多糖具有相对较强的活性[39]。然而,也有人得出相反的观点,Sasaki等发现香菇多糖经降解为无分支状结构后仍能抑制S-180肉瘤细胞增殖,表明支链对多糖的抗肿瘤活性影响不大[40]

多糖的高级结构比较复杂,是糖链之间或者糖链内部氢键、范德华力、色散力和疏水性等非共价键共同作用的结果。研究表明,β-(1→3)-D-葡聚糖的单股螺旋构象是多糖生物活性的基础[38-39,41]。比如,Bohn等认为β-(1→3)-D-葡聚糖的抗肿瘤活性依赖于其主链的单螺旋结构和位于螺旋体表面羟基,而三股螺旋结构对其活性来说并不是必须的[39]。但与此相对的是,Maeda等认为,三股螺旋构型对有些食用菌β-(1→3)-葡聚糖的免疫刺激和抗肿瘤活性很重要[42]。当香菇多糖的三螺旋结构被破坏后,其抗肿瘤活性大大降低,甚至消失[24,43-44]。由此可见,真菌多糖的结构,尤其是分支侧链和三螺旋结构对于其活性的影响还存在争议。

多糖的溶液行为,尤其是稳定性与其结构具有紧密联系。多糖在水溶液中表现出不同的形态,包括球形链、无规线团、双螺旋链、三螺旋链等,这是由于其分子链连接方式、侧链结构和支化程度等一级结构不同,从而导致多糖分子内和分子间氢键以及取代基静电排斥作用各不相同,进而使其在水溶液中表现出不同的形态[45]。一般而言,由于多糖羟基之间存在很强的氢键,多糖在水溶液中很容易自我聚集,从而使溶液发生分层现象[46-47]。不仅如此,聚集可能会减少多糖链与受体的结合,从而减弱免疫应答[21]。此外,Zhang等发现,高度缠结的三螺旋链形成连续的网络,导致香菇多糖水溶液的凝胶化,变成非流动性的浓溶液,但不存在交联点和明显的聚集体[27]

1.3 多糖理化性质与溶液行为和生物活性的关系

多糖的生物活性除了与上面提到的分子量、单糖组成、支化度和构象等有关外[39,48],其水溶性的强弱也起着关键性的作用,一般水溶性强、黏度低的多糖具有相对高的生物活性[37]。通过化学修饰改变多糖的水溶性可显著影响其活性,如部分乙酰化可增加多糖水溶性而提高抗肿瘤活性,但是全乙酰化就降低其水溶性而失去抑瘤活性[23]。师然新等探讨了特性黏度[η]对角叉菜多糖抗癌活性的影响[49],结果发现,当[η]=53.4 时,抑瘤率为23.0%,当[η]=5.6时,抑瘤率高达63.6%,但随着多糖的进一步降解,[η]=0.8时,抑瘤率迅速降低仅为5.1%,揭示了适当粘度对多糖抗肿瘤作用具有重要意义。

可溶性多糖的溶解度、浓度和粘度与其溶液行为,尤其是稳定性息息相关[50-52]。胡婷采用稳定性分析仪评价了不同浓度虎乳灵芝多糖(LRP)水溶液(1~15 mg/mL)在25 ℃下的稳定性[53]。结果发现,低浓度(≤6 mg/mL)时,LRP水溶液不稳定,容易聚集沉淀,但随着浓度的增大溶液会趋于稳定。高浓度LRP溶液中动态缠结网络结构增加,从而使其不会发生聚集,而是形成具有一定强度的凝胶[54]。此外,香菇多糖水溶液在较低浓度时就可形成凝胶,可能原因是极度缠结的三螺旋链形成连续的网络结构,从而赋予体系凝胶特性[9-10]。不过香菇多糖溶液形成的凝胶具有热力学可逆性。

2 超声对多糖构效关系和溶液行为的影响

超声是最有应用前景的降解多糖的方法之一,它可使多糖分子链断裂[55-57]。超声也会对多糖的结构特征和生物活性产生一定的影响。此外,超声波可提高多糖溶解性,降低粘度,大大提高多糖的提取率。Hu等比较了超声提取(UTE),酶提取(ETE)和超声波辅助酶提取(UETE)对银杏果多糖的提取率、一级结构和抗氧化活性的影响[58]。与其他两种方法相比,UETE显著增强了银杏果多糖的提取率、降血糖活性和抗氧化活性,且UETE-多糖呈海绵状,具有光滑的表面形态和小的分子聚集体。此外,超声波处理大大降低了银杏果多糖的分子量,改变了多糖的单糖组成和摩尔比,并且超声波可能导致原子重排,将一些甘露糖转化为鼠李糖。然而,张丽芬研究了超声波降解果胶的机理,发现超声使果胶的侧链发生降解,降低了果胶的分子量,但并不会影响果胶的单糖种类和主链结构[59]。王博等也发现超声仅仅是改变了水溶性茯苓多糖的分子链构象,使其从网状向棒状转变,而并没有改变其单糖组成[60]

研究表明,超声处理可以改变多糖水溶液的聚集行为和粘弹行为。闫景坤将虎乳灵芝多糖LRP稀溶液(1 mg/mL)超声处理(325 W)0.05~90 min后,分析LRP的结构及链构象的影响[61]。结果显示,短时间(≤1 min)的超声可以使聚集体被打散,多糖分子尺寸变小(溶液由浑浊变澄清)。继续超声5~30 min后,对各分子参数影响不大,仅使粒度分布更加均匀。但超声60~90 min后,粒度变大、新的聚集体出现,使溶液又由澄清变浑浊。造成这一现象的可能原因是,长时间的超声使小线团越来越多,多糖分子间布朗运动更剧烈,更容易发生聚集形成较大的聚集体,从而使多糖的粒度变大、粒度分布变宽。此外,超声不会完全破坏LRP的基本化学结构和有序的螺旋结构,但可能会引起糖苷键的断裂[62-64]。而对LRP浓溶液(15 mg/mL,呈现弱凝胶的性质)超声处理10、30和60 min后,体系先增稠再变稀,LRP凝胶的强度随超声时间的延长先增强再减弱,这是由于虎乳灵芝多糖LRP形成暂时网络结构的能力会随超声时间的延长先增大后减小。此外,Seshadri等发现超声处理可以降低果胶的分子量和凝胶能力,流变性质逐渐从假塑性流体转变为牛顿性流体[65]。O’Donnella等探讨了超声波处理对食品中果胶甲酯酶的影响,超声对可使果蔬汁中果胶甲酯酶失活,从而影响果胶的流变性质,改变果蔬汁的粘度和稳定性等[66]

3 微波对多糖构效关系和溶液行为的影响

研究表明,微波处理能引起聚合物的降解[12],多糖的流变性、粘度及溶解性也会被改变[14-15]。Guo等研究了常规热水提取,微波辅助提取(500 W,6.5 min)和超声辅助提取对雪菊多糖的化学结构和抗氧化活性的影响[67],结果表明,与热水提取和超声辅助提取相比,微波辅助提取出的雪菊多糖分子量最小,体外抗氧化活性最高。微波辅助提取获得的多糖由于其低分子量和高含量的未甲基化的半乳糖醛酸的特点,使其具有更高抗氧化活性。胡婕伦发现,微波处理(800 W,15 min)后,车前子多糖的表观粘度、平均相对分子质量和粒径都降低[68]。同时,随着车前子多糖分子量的降低,多糖中还原糖含量增加,这表明微波对多糖的降解伴随着糖苷键的断裂。此外,微波处理并没有改变车前子多糖的主要官能团,但多糖的表观形貌从大薄片状变为小的碎片。微波处理车前子多糖后,其在体外酵解中的短链脂肪酸产量和微生物胞外酶(木聚糖酶和、葡萄糖醛酸酶等)活性显著提高,这些结果表明,微波处理能成为增加多糖附加价值的方式[69]。Zhang等发现微波处理石蒜淀粉后,其凝胶结构变弱[70]。微波(700 W,1 min)处理增加了淀粉分子中的氢键,破坏了晶体和非晶态区域的结构,此外,高含水量可以增强微波对淀粉的作用[71]

4 高压均质对多糖构效关系和溶液行为的影响

高压均质是一种改性多糖的有效方法[72-74]。据报道,高压处理可以改变多糖的构型,提高多糖的益生功能[75-76]。王磊等发现在 37 MPa条件下均质8次,椪柑渣中可溶性膳食纤维的提取率高达43.86%,此外,经均质改性的可溶性膳食纤维具有一定的还原能力[77]。Xie等采用较高的压力(200 MPa,20 min)对紫肉马铃薯进行均质处理,结果显示高压均质改变了紫肉马铃薯多糖中单糖组成和结构特征,阿拉伯糖的百分比从17.1%上升到 83.5%,葡糖糖由 51.9%下降到4.1%,另外,可溶性膳食纤维的比例由 17.9%上升到 39.3%,同时,抗氧化活性也更高[78]。高压均质(160 MPa,5次)能使车前子多糖粒径下降,并使其表观形貌由大的片状结构转变为小的多孔片状结构,但并没有改变其主要结构特征。然而,高压均质处理车前子多糖后,其在小鼠盲肠和结肠中总短链脂肪酸,丙酸和正丁酸的产量显著提高。这些结果表明,高压均质能成为增加多糖附加价值的方式[69]

而对于不同结构和来源的多糖,均质对其的影响各不相同。例如,高压均质可以显著降低柑橘果胶的分子量,而对苹果果胶几乎没有影响,造成这种现象的可能原因是柑橘果胶属于线性多糖聚合物,结构相对松散,容易发生解聚;而苹果果胶结构更加紧密,具有一定的抗压能力[73]。同样,对于线性果胶,高压均质可以不同程度的降低其摩尔分子质量和表观粘度,而对于球状分支结构的果胶几乎没有影响[73-74]

多糖的粒径、流变性、粘度和乳化性在高压均质过程中也会被改变[79-80]。一般来讲,在一定压力范围内,随着均质压力和均质次数的增加,多糖聚合物粒径减小,表面电荷减少,溶液粘度降低[81]。30 MPa以下的均质化在食品工业中易于操作,可能对多糖的结构和功能特性有较好的影响[82]。例如,Zhang等通过均质2次(30 MPa)对柑橘膳食纤维进行改性,均质后的柑橘膳食纤维具有多孔结构,晶区结构被破坏,使其内部结构松散[82]。因此,均质可以有效提高其吸水膨胀率(433%)和持水率(253%),并且具有热溶液行为。然而,如果均质压力过高,对其溶液行为反而有不利的影响。以菊粉多糖为例,随着均质压力的增加,菊粉的溶解性和分散性增加,菊粉微粒之间以及菊粉与水分子之间的相互作用增强。经过103或207 MPa处理后,样品平均粒径显著降低,溶液粘弹性增加,样品保持均一、稳定的状态;而经过296 MPa处理样品的平均粒径显著增加,凝胶强度降低,样品略有分层,可能原因是均质压力过高,菊粉颗粒发生重组,从而降低了菊粉的持水能力[83]。由此可见,高压均质是一种改性多糖和提高溶液稳定性的有效方法。

5 结语

多糖是生物体内除蛋白质和核酸外又一类重要的生物大分子。多糖的生物活性和溶液行为与其结构密切相关,对多糖结构(尤其是高级结构)的研究,对于多糖的进一步应用和发展起着至关重要的作用。然而,由于多糖研究发展的滞后性以及多糖本身结构的多变性、复杂性和微观不均一性,导致目前对多糖空间高级结构的解析还面临着诸多挑战,多糖高级结构的研究技术还有待突破。

食品加工对多糖的结构、生物活性和溶液行为均有影响。目前研究主要集中在食品加工方法对食品原料中多糖提取过程中的提取效率、分子量、单糖组成和体外抗氧化影响等的影响。而对于食品加工过程对食品中天然存在多糖的结构、功能和溶液行为的研究较少。因此,在未来研究中,需要关注和比较不同加工技术在食品加工过程中对多糖结构和生物活性的影响以及其中的分子机制,实现多种食品加工技术的综合利用,获得高品质、高活性的多糖产品。

参考文献:

[1] FANG Q Y, HU J L, NIE Q X, et al.Effects of polysaccharides on glycometabolism based on gut microbiota alteration[J].Trends in Food Science & Technology, 2019, 92: 65-70.

[2] LI C, LI X, YOU L, et al.Fractionation, preliminary structural characterization and bioactivities of polysaccharides from Sargassum pallidum[J].Carbohydr Polym, 2017, 155: 261-270.

[3] ZHANG Y, ZHOU T, WANG H, et al.Structural characterization and in vitr o antitumor activity of an acidic polysaccharide from Angelica sinensis (Oliv.) Diels[J].Carbohydr Polym, 2016, 147: 401-408.

[4] WANG M, YANG X B, ZHAO J W, et al.Structural characterization and macrophage immunomodulatory activity of a novel polysaccharide from Smilax glabra R oxb[J].Carbohydr Polym, 2017, 156: 390-402.

[5] WANG S, LI Q, ZANG Y, et al.Apple Polysaccharide inhibits microbial dysbiosis and chronic inflammation and modulates gut permeability in HFD-fed rats[J].Int J Biol Macromol, 2017,99: 282-292.

[6] SHI G J, ZHENG J, WU J, et al.Beneficial effects of Lycium barbarum polysaccharide on spermatogenesis by improving antioxidant activity and inhibiting apoptosis in streptozotocininduced diabetic male mice[J].Food & function, 2017, 8(3):1215-1226.

[7] IRSHAD M, MURTZA A, ZAFAR M, et al.Chitosanimmobilized pectinolytics with novel catalytic features and fruit juice clarification potentialities[J].International Journal of Biological Macromolecules, 2017, 104: 242-250.

[8] LI Y Q, FAN L P.Comparative studies on the stabilization of Flos Sophorae Immaturus beverages by various hydrocolloids[J].Lwt-Food Sci Technol, 2020, 123(1): 109117.

[9] NI Y, ZHANG Z, FAN L P, et al.Evaluation of physical stability of high pressure homogenization treatment cloudy ginkgo beverages[J].LWT-Food Sci Technol, 2019, 111: 31-38.

[10] 张阳洋.香菇葡聚糖稀至浓溶液的行为研究[D].武汉: 武汉大学, 2010.ZHANG Y Y.The solution properties of triple helical lentinan from diluted to concentrated polymer region[D].Wuhan:Wuhan University, 2010.

[11] LIU J N, BI J F, MCCLEMENTS D J, et al.Impacts of thermal and non-thermal processing on structure and functionality of pectin in fruit- and vegetable- based products: A review[J].Carbohydrate Polymers, 2020, 250(3): 116890.

[12] KIM I H, CHO H C, BAE Y C, et al.Heat and radiation effect on the degradation behaviors of polymeric liquids[J].Eur Polym J, 2003, 39(7): 1431-1435.

[13] WANG J, WANG J, VANGA S K, et al.High-intensity ultrasound processing of kiwifruit juice: Effects on the microstructure, pectin, carbohydrates and rheological properties[J].Food Chemistry, 2020, 313: 126121.

[14] TAO Y Z, XU W L.Microwave-assisted solubilization and solution properties of hyperbranched polysaccharide[J].Carbohydrate Research, 2008, 343(18): 3071-3078.

[15] REDDY T T, TAMMISHETTI S.Free radical degradation of guar gum[J].Polym Degrad Stabil, 2004, 86(3): 455-459.

[16] 李盛.香菇三螺旋葡聚糖氢键键合作用及其功能化研究[D].武汉: 武汉大学, 2013.LI S.The functionalization of triple helical lentinan based on hydrogen bonding association[D].Wuhan: Wuhan University,2013.

[17] DENG C, FU H, TENG L, et al.Anti-tumor activity of the regenerated triple-helical polysaccharide from Dictyophora indusiata[J].Int J Biol Macromol, 2013, 61: 453-458.

[18] LEI N, WANG M, ZHANG L, et al.Effects of low molecular weight yeast beta-Glucan on antioxidant and immunological activities in mice[J].Int J Mol Sci, 2015, 16(9): 21575-21590.

[19] CHOI J I, KIM H J, LEE J W.Structural feature and antioxidant activity of low molecular weight laminarin degraded by gamma irradiation[J].Food Chemistry, 2011, 129(2): 520-523.

[20] EL ENSHASY H A, HATTI-KAUL R.Mushroom immunomodulators: unique molecules with unlimited applications[J].Trends in Biotechnology, 2013, 31(12):668-677.

[21] ZHENG X, LU F Z, XU X J, et al.Extended chain conformation of beta-glucan and its effect on antitumor activity[J].J Mater Chem B, 2017, 5(28): 5623-5631.

[22] BIMCZOK D, WRENGER J, SCHIRRMANN T, et al.Short chain regioselectively hydrolyzed scleroglucans induce maturation of porcine dendritic cells[J].Appl Microbiol Biot,2009, 82(2): 321-331.

[23] 王俊.香菇多糖的结构与抗肿瘤活性的关系研究[D].武汉:华中科技大学, 2012.WANG J.Research of correlation between antitumor activity and structure of Lentinan[D].Wuhan: Huazhong University of Science and Technology, 2012.

[24] ZHANG L, LI X L, XU X J, et al.Correlation between antitumor activity, molecular weight, and conformation of lentinan[J].Carbohydrate Research, 2005, 340(8): 1515-1521.

[25] LIU W, WANG H Y, PANG X B, et al.Characterization and antioxidant activity of two low-molecular-weight polysaccharides purified from the fruiting bodies of Ganoderma lucid um[J].International Journal of Biological Macromolecules, 2010, 46(4): 451-457.

[26] WANG X, XU X, ZHANG L.Thermally induced conformation transition of triple-helical lentinan in NaCl aqueous solution[J].J Phys Chem B, 2008, 112(33): 10343-10351.

[27] ZHANG Y Y, LI S, ZHANG L N.Aggregation behavior of triple helical polysaccharide with low molecular weight in diluted aqueous solution[J].J Phys Chem B, 2010, 114(15):4945-4954.

[28] LIU Q, XU X, ZHANG L.Variable chain conformations of renatured beta-glucan in dimethylsulfoxide/water mixture[J].Biopolymers, 2012, 97(12): 988-997.

[29] REN L, PERERA C, HEMAR Y.Antitumor activity of mushroom polysaccharides: a review[J].Food & function,2012, 3(11): 1118-1130.

[30] ZHANG M, CUI S W, CHEUNG P C K, et al.Antitumor polysaccharides from mushrooms: a review on their isolation process, structural characteristics and antitumor activity[J].Trends in Food Ence & Technology, 2007, 18(1): 4-19.

[31] 方晶, 李从强, 柯丽霞, 等.食用菌多糖的研究[J].微生物学杂志, 2008, 28(2): 57-60.FANG J, LI C Q, KE L X, et al.Polysaccharides from edible fungi[J].Journal of Microbiology, 2008, 28(2): 57-60.

[32] 姜玥.五种食用菌不同提取物的免疫活性比较及理化特性分析[D].合肥: 合肥工业大学, 2013.JIANG Y.Comparison on physicochemical property and immunoactivity of different extracts from five species of edible mushrooms[D].Hefei: Hefei University of Technology, 2013.

[33] UKAWA Y, HISAMATSU M, ITO H, et al.Antitumor effects of(1→3)-β-D-glucan and (1→6)-β-D-glucan purified from newly cultivated mushroom, Hatakeshimeji (Lyophyllum decastes Sing.)2000, 90(1): 98-104.

[34] TONG H, XIA F, FENG K, et al.Structural characterization and in vitro antitumor activity of a novel polysaccharide isolated from the fruiting bodies of Pleurotus ostr eatus[J].Bioresource Technology, 2009, 100(4): 1682-1686.

[35] 张琪琳.香菇多糖的结构鉴定及抗肿瘤作用机制研究[D].武汉: 华中科技大学, 2015.ZHANG Q L.Structural elucidation and antitumor mechanisms of polysaccharides isolated from Lentinus edodes[D].Wuhan:Huazhong University of Science and Technology, 2015.

[36] TANG R, CHEN X Y, DANG T T, et al.Lycium barbarum polysaccharides extend the mean lifespan of Drosophila melanogaster[J].Food & function, 2019, 10(7): 4231-4241.

[37] 颜邦干.香菇多糖的分离纯化及其分子结构改性的研究[D].杭州: 浙江大学, 2006.YAN B G.Study on extraction and purification of lentinan and its molecular structure modification[D].Hangzhou: Zhejiang University, 2006.

[38] SAIT H, YOSHIOKA Y, UEHARA N, et al.Relationship between conformation and biological response for (1-3)-beta-D-glucans in the activation of coagulation factor G from limulus amebocyte lysate and host-mediated antitumor activity.Demonstration of single-helix conformation as a stimulant[J].Carbohydrate Research, 1991, 217: 181-190.

[39] BOHN J A, BEMILLER J N.(1→3)-β-d-Glucans as biological response modifiers: a review of structure-functional activity relationships[J].Carbohydrate Polymers, 1995, 28(1): 3-14.

[40] SASAKI T.Further study of the structure of lentinan, an anti-tumor polysaccharide from Lentinus edodes[J].Carbohydr Res, 1976, 47(1): 99-104.

[41] 高小荣, 刘培勋.多糖构效关系研究进展[J].中草药.2004,35(2): 229-231.GAO X R, LIU P X.Research progress on structure-activity relationship of polysaccharides[J].Chinese Traditional and Herbal Drugs.2004, 35(2): 229-231.

[42] WASSER S P.Medicinal mushrooms as a source of antitumor and immunomodulating polysaccharides.Appl Microbiol Biot,2002, 60(3): 258-274.

[43] MAEDA Y Y, WATANABE S T, CHIHARA C, et al.Denaturation and renaturation of a beta-1,6;1,3-glucan,lentinan, associated with expression of T-cell-mediated responses[J].Cancer Research, 1988, 48(3): 671-675.

[44] UNURSAIKHAN S, XU X, ZENG F, et al.Antitumor activities of O-sulfonated derivatives of (1→3)-alpha-D-glucan from different Lentinus edodes[J].Biosci Biotechnol Biochem, 2006,70(1): 38-46.

[45] LI S, ZHANG Y, XU X, et al.Triple helical polysaccharideinduced good dispersion of silver nanoparticles in water.Biomacromolecules, 2011, 12(8): 2864-2871.

[46] YIN J Y, NIE S P, GUO Q B, et al.Effect of calcium on solution and conformational characteristics of polysaccharide from seeds of Plantago asiatica L.Carbohydrate Polymers,2015, 124: 331-336.

[47] XU S Q, LIN Y, HUANG J, et al.Construction of high strength hollow fibers by self-assembly of a stiff polysaccharide with short branches in water.J Mater Chem A, 2013, 1(13):4198-4206.

[48] HUANG Q, JIN Y, ZHANG L, et al.Structure, molecular size and antitumor activities of polysaccharides from Poria cocos mycelia produced in fermenter[J].Carbohydrate Polymers,2007, 70(3): 324-333.

[49] 师然新, 徐祖洪, 李智恩.降解的角叉菜多糖的抗肿瘤活性[J].海洋与湖沼.2000, 31(6): 653-656.SHI R X, XU Z H, LI Z E.Antitumor activity of degraded Chondrus ocella tus polysaccharide[J].Oceanologia et Limnologia Sinica, 2000, 31(6): 653-656.

[50] KUMAR V, SINHA A K, MAKKAR H, et al.Dietary roles of non-starch polysaccharides in human nutrition: a review[J].Crit Rev Food Nutr, 2012, 52(10): 899-935.

[51] GÓMEZ C, NAVARRO A, MANZANARES P, et al.Physical and structural properties of barley (1→3), (1→4)-β-D-glucan.Part II.Viscosity, chain stiffness and macromolecular dimensions[J].Carbohydrate Polymers, 1997, 32(1): 17-22.

[52] LI W, CUI S W, WANG Q, et al.Studies of aggregation behaviours of cereal b-glucans in dilute aqueous solutions by light scattering: Part I.Structure effects[J].Food Hydrocolloids.2011, 25: 189-195.

[53] 胡婷.虎乳灵芝多糖的多级结构及溶液行为研究[D].武汉:华中农业大学, 2017.HU T.Multilevel structure and solution behavior of polysaccharides from Lignosus r hinocerotis sclerotia[D].Wuhan: Huazhong Agricultural University, 2017.

[54] XU D X, ZHANG J J, CAO Y P, et al.Influence of microcrystalline cellulose on the microrheological property and freeze-thaw stability of soybean protein hydrolysate stabilized curcumin emulsion[J].Lwt-Food Sci Technol, 2016, 66:590-597.

[55] SUSLICK K S, PRICE G J.Applications of ultrasound to materials chemistry[J].Annu Rev Mater Sci, 1999, 29:295-326.

[56] KODA S, TAGUCHI K, FUTAMURA K.Effects of frequency and a radical scavenger on ultrasonic degradation of watersoluble polymers[J].Ultrasonics Sonochemistry, 2011, 18(1):276-281.

[57] MOHOD A V, GOGATE P R.Ultrasonic degradation of polymers: Effect of operating parameters and intensification using additives for carboxymethyl cellulose (CMC) and polyvinyl alcohol (PVA)[J].Ultrasonics Sonochemistry, 2011,18(3): 727-734.

[58] HU J, LIU Y, CHENG L, et al.Comparison in bioactivity and characteristics of Ginkgo biloba seed polysaccharides from four extract pathways[J].Int J Biol Macromol, 2020, 159:1156-1164.

[59] 张丽芬.果胶多糖超声波定向降解途径及机理研究[D].杭州: 浙江大学, 2013.ZHANG L F.The study on ultrasonic path and mechanism of orientation degradation of pectin polysaccharide with ultrasound[D].Hangzhou: Zhejiang University, 2013.

[60] 王博, 孙润广, 张静.超声波强化提取对茯苓水溶性多糖结构影响的研究[J].应用声学.2009, 3: 195-202.WANG B, SUN R G, ZHANG J.Effect of ultrasonic extraction on the structure of water-soluble polysaccharide from the sclerotium of Poria cocos[J].Applied Acoustics, 2009, 3:195-202.

[61] 闫景坤.抗氧化新型冬虫夏草胞外多糖的制备、结构与溶液特征研究[D].广州: 华南理工大学, 2010.YAN J K.Preparation, structure and solution properties of a novel antioxidant exopolysaccharide from Cordyceps sinensis[D].Guangzhou: South China University of Technology, 2010.

[62] GUO X, YE X, SUN Y, et al.Ultrasound effects on the degradation kinetics, structure, and antioxidant activity of sea cucumber fucoidan[J].Journal of Agricultural & Food Chemistry, 2014, 62(5): 1088-1095.

[63] WANG Z M, CHEUNG Y C, LEUNG P H, et al.Ultrasonic treatment for improved solution properties of a high-molecular weight exopolysaccharide produced by a medicinal fungus[J].Bioresource Technology, 2010, 101(14): 5517-5522.

[64] ZHANG L, YE X, DING T, et al.Ultrasound effects on the degradation kinetics, structure and rheological properties of apple pectin[J].Ultrasonics Sonochemistry, 2013, 20(1): 222-231.

[65] SESHADRI R, WEISS J, HULBERT G J, et al.Ultrasonic processing influences rheological and optical properties of high-methoxyl pectin dispersions[J].Food Hydrocolloid, 2003,17(2): 191-197.

[66] O’DONNELL C P, TIWARI B K, BOURKE P, et al.Effect of ultrasonic processing on food enzymes of industrial importance[J].Trends in Food Science & Technology, 2010,21(7): 358-367.

[67] GUO H, YUAN Q, FU Y, et al.Extraction optimization and effects of extraction methods on the chemical structures and antioxidant activities of polysaccharides from snow chrysanthemum (Coreopsis T inctoria)[J].Polymers-Basel,2019, 11(2): 215.

[68] 胡婕伦.大粒车前子多糖体内外消化与酵解特征体系构建及其促进肠道健康的作用[D].南昌: 南昌大学, 2014.HU J L.Establishment of a system for in vitro and in vivo studies on digestion and fermentation of polysaccharide from seeds of Plantago asiatica L.with its beneficial effects on intestinal health[D].Nanchang: Nanchang University, 2014.

[69] HU J L, NIE S P, XIE M Y.High pressure homogenization increases antioxidant capacity and short-chain fatty acid yield of polysaccharide from seeds of Plantago asiatica L[J].Food Chem, 2013, 138(4): 2338-2345.

[70] ZHANG F, ZHANG Y Y, THAKUR K, et al.Structural and physicochemical characteristics of lycoris starch treated with different physical methods[J].Food Chemistry, 2019, 275:8-14.

[71] LI Y, HU A J, WANG X Y, et al.Physicochemical and in vitro digestion of millet starch: Effect of moisture content in microwave[J].International Journal of Biological Macromolecules, 2019, 134: 308-315.

[72] 刘伟, 宋弋, 张洁, 等.高压均质在食品加工中的研究进展[J].食品研究与开发.2017, 38(24): 213-219.LIU W, SONG G, ZHANG J, et al.Progress in research on high pressure homogenization in food processing[J].Food Research and Development.2017, 38(24): 213-219.

[73] SHPIGELMAN A, KYOMUGASHO C, CHRISTIAENS S, et al.The effect of high pressure homogenization on pectin:Importance of pectin source and pH[J].Food Hydrocolloid,2015, 43: 189-198.

[74] VILLAY A, DE FILIPPIS F L, PICTON L, et al.Comparison of polysaccharide degradations by dynamic high-pressure homogenization[J].Food Hydrocolloid, 2012, 27(2): 278-286.

[75] GUO X F, ZHAO W T, PANG X L, et al.Emulsion stabilizing properties of pectins extracted by high hydrostatic pressure,high-speed shearing homogenization and traditional thermal methods: A comparative study[J].Food Hydrocolloid, 2014, 35:217-225.

[76] PALMERO P, COLLE I, LEMMENS L, et al.Enzymatic cell wall degradation of high-pressure-homogenized tomato puree and its effect on lycopene bioaccessibility[J].J Sci Food Agr.2016, 96(1): 254-261.

[77] 王磊, 袁芳, 向俊, 等.响应面法优化高压均质提取椪柑渣中可溶性膳食纤维及抗氧化活性研究[J].中国食品学报,2015, 5: 87-94.WANG L, YUAN F, XIANG J, et al.Optimization of high-pressure homogenization extraction of soluble dietary fiber from ponkan residue using response surface methodology and its antioxidant activities[J].Journal of Chinese Institute of Food Science and Technology, 2015, 5: 87-94.

[78] XIE F, LI M, LAN X, et al.Modification of dietary fibers from purple-fleshed potatoes (Heimeiren) with high hydrostatic pressure and high pressure homogenization processing: A comparative study[J].Innov Food Sci Emerg, 2017, 42: 157-164.

[79] CHEN J, LIANG R H, LIU W, et al.Degradation of highmethoxyl pectin by dynamic high pressure microfluidization and its mechanism[J].Food Hydrocolloid, 2012, 28(1): 121-129.

[80] FLOURY J, DESRUMAUX A, AXELOS M V, et al.Degradation of methylcellulose during ultra-high pressure homogenisation[J].Food Hydrocolloid, 2002, 16(1): 47-53.

[81] VARGAS M, PERDONES A, CHIRALT A, et al.Effect of homogenization conditions on physicochemical properties of chitosan-based film-forming dispersions and films[J].Food Hydrocolloid, 2011, 25(5): 1158-1164.

[82] ZHANG Y, QI J R, ZENG W Q, et al.Properties of dietary fiber from citrus obtained through alkaline hydrogen peroxide treatment and homogenization treatment[J].Food Chemistry,2020, 311, 125873.

[83] ALVAREZ-SABATEL S, DEMARANON I M, ARBOLEYA J C.Impact of high pressure homogenisation (HPH) on inulin gelling properties, stability and development during storage[J].Food Hydrocolloid, 2015, 44: 333-344.

备注:本文的彩色图表详见本期 PC14,也可从本刊官网(http://lyspkj.ijournal.cn/ch/ index.axpx)、中国知网、万方、维普、超星等数据库下载获取。

Advances on the Effect of Processing Technology on Structure Activity Relationship and Solution Behavior of Polysaccharides

ZHAO Xiu-ting1, SONG Zhi-ping1, FU Meng1, LI Jin-wei2, ZHU Song2, FAN Liu-ping2✉
(1.Infinitus (China) company LTD, Jiangmen, Guangdong 529100, China;2.School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China)

Abstract: Polysaccharides are natural polymers formed by more than 10 monosaccharide molecules connected by glycoside bonds.The structure is the basis of the biological activity of polysaccharides.The structure of polysaccharides is complex and diverse, and its biological functions are also varied, including the regulation of immunity, anti-tumor, anti-oxidation and hypoglycemia.Therefore, polysaccharides have a broad application prospect in health food and medicine.The food processing technology has great influence on the structure, biological function and solution behavior of polysaccharides.Ultrasonic, microwave and high pressure homogenization treatment can cause degradation of the polymers, thus affecting the biological function and rheological property of the polysaccharides.This review focuses on the effects of processing technology on the structure-activity relationship and solution behavior of polysaccharides, which will provide the guidance for the exploitation and application of polysaccharides.

Key words: polysaccharides; structure-activity relationship; solution behavior; ultrasound; microwave; high pressure homogeneous

中图分类号:TS201.4

文献标识码:A

文章编号:1007-7561(2021)03-0078-09

网络首发时间:2021-04-23 15:07:35

网络首发地址:https://kns.cnki.net/kcms/detail/11.3863.ts.20210423.1129.005.html

DOI: 10.16210/j.cnki.1007-7561.2021.03.010

赵秀婷, 宋志萍, 付萌, 等.食品加工技术影响多糖构效关系和溶液行为的研究进展[J].粮油食品科技, 2021, 29(3): 78-86.

ZHAO X T, SONG Z P, FU M, et al.Advances on the effect of processing technology on structure activity relationship and solution behavior of polysaccharides[J].Science and Technology of Cereals, Oils and Foods, 2021, 29(3): 78-86.

收稿日期:2021-02-25

基金项目:江门市科技计划项目(2020030103440009078)

Supported by: Science and Technology Project of Jiangmen City (No.2020030103440009078)

作者简介:赵秀婷,女,1980年出生,硕士,工程师,研究方向为健康食品工艺技术研究。E-mail:28237987@qq.com.

通讯作者:范柳萍,女,1972年出生,博士,教授,研究方向为食品科学研究。E-mail:fanliuping@jiangnan.edu.cn.